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Preface

Though PID control has a long history as much as its life force since Ziegler
and Nichols published the empirical tuning rules in 1942, surprisingly, it has
never been changed in the structure itself. The strength of PID control lies in
the simplicity, lucid meaning, and clear effect. Though it must be a widely ac-
cepted controller for mechanical control systems, it is still short of theoretical
bases, e.g., optimality, performance tuning rules, automatic performance tun-
ing method, and output feedback PID control have not been clearly presented
for mechanical control systems. These subjects will be thoroughly discussed in
this book. There are many books of PID controller for the purpose of process
control, but it is hard to find a book on the characteristics of PID control for
mechanical systems.

In the first place, when nonlinear optimal control theory is applied to
mechanical systems, a class of Hamilton-Jacobi (HJ) equations is derived as
a result of optimization. There are two methods to solve a class of HJ equa-
tions: a direct method using an approximation and inverse method finding the
performance index from a class of HJ equations. Also, there are two control
methods according to the objective: the set-point regulation control and tra-
jectory tracking control. The trajectory tracking control is basically different
from set-point regulation one in that the desired configuration, velocity and
acceleration profiles according to time progress are added to the motion of
mechanical system. This book is focusing on an inverse optimization method
and the trajectory tracking control system.

Second, the PID control is shown to be an optimal one for a performance
index found inversely from a class of HJ equations. In other words, this book
reveals algebraic relationships between the individual PID gains and H∞ per-
formance index. Especially, an inverse optimal PID controller is newly defined
from the extended disturbance input-to-state stability (ISS) and an inverse
optimization method. It is proved that an inverse optimal PID control exists
if and only if the mechanical system is extended disturbance input-to-state
stable (ISS). Also, selection guidelines for gains are suggested using the time
derivative of Lyapunov function.
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VIII Preface

Third, the performance tuning methods of PID control are derived from
performance limitations expressed by a state vector and composite error, re-
spectively. They are suggested for trajectory tracking models of mechanical
systems. To begin with, two simple performance tuning rules are suggested
for an inverse optimal PID controller: the square tuning rule and linear one.
And then, the compound performance tuning rule is suggested unifying both
square tuning and linear one. Also, many experiments are performed to show
the effectiveness of those tuning rules.

Fourth, an automatic performance tuning method of PID control is de-
rived from the direct adaptive control scheme, because above three tuning
methods are all passive in that the control performance can not be directly
estimated by them because they are composed of proportional relations. The
quasi-equilibrium region is firstly defined to show the existence of target per-
formance for PID controller. Also, it is proved that the control performance
is enhanced by applying an auto-tuning law to the PID controller. The exper-
imental results show the validity of auto-tuning law for PID control.

Finally, PID state observer is suggested to accomplish output feedback
PID controller, similar to the design method for high-gain observer. The ob-
server gains of PID state observer are found from the robustness against dis-
turbances. Also, it is proved that the output feedback PID control system
including a PID state observer can be disturbance input-to-state stable un-
der the condition for observer gain. Additionally, the reduced-order PID (ID)
state observer is suggested according to the same procedures with a PID state
observer.

We hope this book helps to understand the characteristics of PID controller
and finally to better use it.

Korea, Inst. of Sci. & Tech. (KIST), Seoul, Korea,
Oct., 2003 Youngjin Choi

Pohang Univ. of Sci. & Tech. (POSTECH), Korea,
Oct., 2003 Wan Kyun Chung
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1

Introduction

1.1 Motivation

Since Ziegler and Nichols’ PID tuning rules had been published in 1942 [68],
the PID control has survived the challenge of advanced control theories, e.g.,
LQG and H∞ control [20, 67], adaptive (backstepping) control [28, 38] and so
forth. The PID’s long life force comes from its clear meaning and effectiveness
in practice. In PID control, the P-control (Proportional control) is the present
effort making a present state into desired state, I-control (Integral control) is
the accumulated effort using the experience information of bygone state and
D-control (Derivative control) is the predictive effort reflecting the tendency
information for ongoing state. Also, PID control has been utilized irrespec-
tive of linear system or nonlinear one, electrical system or mechanical one,
time-invariant system or time-varying one. Though the PID control has been
widely accepted in industry, PID control itself is still short of the theoretical
basis, e.g., the optimality of PID control, performance tuning rules of PID
control, automatic performance tuning method and the PID state observer
have not been clearly presented especially for the trajectory tracking control
of mechanical systems.

As we can see in [3, 26, 66], the PID control has been an intensive re-
search topic for process control systems, but it has not attracted one’s in-
terest so much for electrical and mechanical control systems. For electrical
control systems, there have been a lot of control methods because the linear
characteristics is dominant near operating region, e.g., lead/lag compensator,
LQG control, H∞ control and so on. On the contrary, since most mechanical
systems show nonlinear characteristics generally, there has been only a few
control methods for mechanical systems. The representative control method
for nonlinear mechanical systems is a feedback linearization method such as
computed-torque one. The feedback linearization method is applicable to the
case that the mechanical parameters such as moment of Inertia, center of mass
and a variety of friction parameters are all identified exactly. If they are not
possible to be identified all, then the feedback linearization with an adaptive

Y. Choi, W.K. Chung: PID Trajectory Tracking Control for Mechanical Systems, LNCIS 298, pp. 3–7, 2004.
Springer-Verlag Berlin Heidelberg 2004
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control scheme in [23, 30, 56] can be applied to nonlinear systems. Though
the adaptive control is useful for uncertain mechanical systems, it has brought
tremendous complexity in controller. According to the survey reported in [35],
since n-link robot manipulators have 10n parameters to be identified by adap-
tation, a great deal of algebraic calculations are required to make use of an
adaptive control according to the increase of the number of linkage. Actually,
industrial robot manufacturing company has used basically the simple PID
control with compensation, in spite of the development of adaptive and/or
modern control assuring better performance, because of its simplicity.

The strongest advantage of PID control is a ‘simplicity’ itself. The sim-
ple control is preferable to the complex control at least in industry, if the
performance enhanced by using complex control does not stand in different
levels. Inspired by this idea, the author tried to extend the theoretical basis of
PID control to both robust control theory and direct adaptive ones including
several issues such as optimality, performance limitation, performance tuning
rule, auto-tuning law, and observer design.

1.2 Historic PD and PID

In Table 1.1, the stability brought by applying either PD or PID control to
mechanical systems is largely classified according to the regulation control or
tracking one. After that Takegaki and Arimoto had proved the global asymp-
totic stability (GAS) by PD control in [60], many kinds of stability have been
proved under various conditions as shown in Table 1.1.

For mechanical system including the external disturbance such as Coulomb
friction, the GAS of PID control was proved in [2]. Even for the mechanical sys-
tem under gravity effect, Tomei proved the GAS of PD control in [63] by using
an adaptation for gravity term. On the other hand, Ortega et al. showed in [46]
that the PI2D control could bring the semi-global asymptotic stability (SGAS)
in the existence of gravity effect and bounded external disturbances. Also, An-
geli proved in [1] that the PD control could achieve the input-output-to-state
stability (IOSS) for mechanical systems. Recently, Ramirez et al. proved the
semi-global asymptotic stability (SGAS) with conditions for PID gains in [51].

The trajectory tracking control system is quite different from the regula-
tion control system in that the desired configurations which are functions of
time are inserted in equation of motion for mechanical system. Hence, the tra-
jectory tracking system has the time-varying characteristics because of desired
configurations. As a primitive work, Qu and Dorsey proved in [50] that the PD
control could bring uniform ultimate boundedness (UUB). Also, Berghuis and
Nijmeijer proposed the output feedback PD control which brought the semi-
global uniform ultimate boundedness (SGUUB) in [7] under gravity and a
bounded disturbance. Recently, Choi et al. suggested an inverse optimal PID
control in [14]. As shown in Table 1.1, it assures the extended disturbance
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input-to-state stability (EISS) and H∞ optimality for a given performance
index. These characteristics will be discussed in chapter 3.

Table 1.1. Stability classification achieved by applying PD/PID control to mechan-
ical systems : where PD+A : PD plus adaptation for gravity term, PD+NI : PD
plus a nonlinear integral control, and PD+O : PD plus linear state observer

Gravity Disturbance Optimality Stability Year

PD Regulation x x x GAS 1981 [60]
PID Regulation x o x GAS 1984 [2]
PD+A Regulation o x x GAS 1991 [63]
PI2D Regulation o o x SGAS 1995 [46]
PD+NI Regulation o x x GAS 1998 [32]
PD Regulation x x x IOSS 1999 [1]
PID Regulation o o x SGAS 2000 [51]

PD Tracking o x x UUB 1991 [50]
PD+O Tracking o o x SGUUB 1994 [7]
PID Tracking o o o EISS 2001 [14]

GAS : global asymptotic stability,
SGAS : semi-global asymptotic stability,
IOSS : input-output-to-state stability,
UUB : uniform ultimate boundedness,
SGUUB : semi-global uniform ultimate boundedness,
EISS : extended disturbance input-to-state stability,

1.3 Book Preview

This book is organized as shown in Fig. 1.1. Chapter 2 describes the character-
istics of mechanical system. Also, optimal control methods for mechanical sys-
tem are discussed from the viewpoint of both direct and inverse optimization
approaches. The direct one is an approximate method and an inverse one has
been used in [18, 47, 50] based on the primitive work by Kalman. Some kinds
of Hamilton-Jacobi equations, e.g., Hamilton-Jacobi-Bellman (HJB) equation
and Hamilton-Jacobi-Isaacs (HJI) equation, are obtained from the optimiza-
tion similar to Riccati equation in linear systems.

In chapter 3, it is discussed that the PID control for mechanical systems
can be optimal for what performance index. Actually, although nonlinear H∞
optimal control theory has been developed for nonlinear mechanical systems,
application examples are few and, if any, it is very restrictive in applying to
multi-variable mechanical systems. Therefore, it is important to reveal the
relationship between H∞ optimal control and PID one. Also, we can confirm
a H∞ optimality of PID through the performance estimation by optimality.
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Ch:2

System

Description

Ch:3

Optimality

Ch:4

Tuning

Laws

Ch:5

Automatic

Tuning

Ch:6

Observer

Full State Feedback
PID Control

Output Feedback
PID Control

Fig. 1.1. Relations among the chapters

In chapter 4, two simple performance tuning rules are derived from the
performance limitation of PID control system, e.g., the square tuning rule
and linear one. Actually, square tuning rule and linear one have an obvious
importance in an engineering sense because of their simplicity. And then, a
compound performance tuning rule is suggested unifying both square rule
and linear one. Also, experimental results for a robotic manipulator show the
effectiveness of those tuning rules.

In chapter 5, an automatic performance tuning rule is proposed for me-
chanical systems, with an extension of the idea about above passive tuning
rules derived from the performance limitation. A lot of automatic performance
tuning methods for PID control system have been proposed for the chemical
process control systems as we can see in [3, 66], however, they can not be
directly applied to mechanical systems because most process systems show
very slow responses and time-delay. Though they have attracted one’s inter-
est, there has been still no auto-tuning law for mechanical systems. According
to the direct adaptive control scheme, the auto-tuning law of PID controller
and the performance improvement enhanced by using an auto-tuning law are
suggested in this chapter.

In chapter 6, an output feedback PID controller is considered instead of the
full state feedback one. Actually, the mechanical systems are usually equipped
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with only position measurement devices, e.g., the optical encoder is utilized
as an exact position measurement device of low cost, hence, the observer
is required to estimate the remaining states, e.g., velocity and integral of
position. A kind of high-gain observer is chosen as the PID state observer.
Additionally, the reduced-PID (ID) state observer is derived from a PID state
observer. Finally, chapter 7 concludes the results.

1.4 Notations

Following notations are used in this book. First, a continuous function α :
[0, a) → '+ is said to belong to class K, if it is strictly increasing and α(0) = 0.
If a = ∞ and α(r) → ∞ as r → ∞, then the function α(r) is said to belong
to class K∞. Second, a continuous function β : [0, a) × '+ → '+ is said to
belong to class KL if, for each fixed s, the mapping β(r, s) belongs to class K
with respect to r and, for each fixed r, the mapping β(r, s) → 0 as s → ∞.
Third, the Euclidean norm of signal vector x(t) is defined by

|x| .=
√

x(t)T x(t), (1.1)

the L2 norm of signal vector x(t) is defined as follows:

‖x‖ .=
√∫ t

0

x(σ)T x(σ)dσ, (1.2)

and the L∞ norm is defined as the maximum among Euclidean norms of signal
vector x(t) as following form:

‖x‖∞ .
= max

0≤σ≤t
|x(σ)|. (1.3)
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Robust and Optimal Control 

for Mechanical Systems

2.1 Introduction

There are three methods to describe the equation of motion for mechanical
system: Newtonian mechanics, Lagrangian one and Hamiltonian one. New-
tonian mechanics has been used for simple mechanical systems because it is
an intuitive and non-systematic method. On the contrary, Lagrangian and
Hamiltonian ones can be used for complex multi-body mechanical systems
because they are systematic approaches. In this chapter, either Lagrangian or
Hamiltonian mechanics is used as a representation for motion of mechanical
systems.

Also, a class of Hamilton-Jacobi (HJ) equations in [8, 65] should be solved
to get the optimality for some performance index. However, since they are
nonlinear partial differential equations, it is hard or impossible to solve them
exactly. There are several trials to solve them: the one is a direct optimiza-
tion method by using approximation and the other is an inverse optimization
method which finds a performance index from HJ equation conversely. First,
the approximation method was suggested to approximately solve the HJ equa-
tion in [12, 64, 65]. For a given performance index, it produces directly an
approximate solution for the HJ equation, as the sweep method for Riccati
equation in linear systems. Second, the inverse optimal method in [18, 36, 47]
suggests the solution first, and then it finds the performance index conversely
from the solution of HJ equation. In this chapter, both direct and inverse
methods are suggested and explained as a background in regard to nonlinear
optimal control.

According to the objective of mechanical control systems, there are two
control types: set-point regulation and trajectory tracking control. Since the
set-point regulation system shows nonlinear time-invariant characteristics,
nonlinear H∞ control method can be directly applied to mechanical systems.
On the contrary, the trajectory tracking system has the nonlinear time-varying
characteristics. To show the optimality of trajectory tracking system, the au-
thors of [18, 47] used the modified computed torque control (Modified-CTC).

Y. Choi, W.K. Chung: PID Trajectory Tracking Control for Mechanical Systems, LNCIS 298, pp. 9–26, 2004.
Springer-Verlag Berlin Heidelberg 2004
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This chapter is organized as follows: section 2.2 arranges two represen-
tation methods for mechanical systems, the optimal control methods for the
set-point regulation and trajectory tracking are surveyed in section 2.3 and
2.4, respectively.

2.2 Nonlinear Mechanical Control Systems

Mechanical system is generally described by nonlinear equation where La-
grangian and Hamiltonian mechanics are used to represent the behavior of
mechanical system. Let us consider a mechanical system with n degrees of
freedom, locally represented by n generalized configuration (position) coor-
dinates q = (q1, · · · , qn). In classical mechanics, the following equation of
motion is derived

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= Fi, i = 1, 2, · · · , n.

Here T (q, q̇) denotes the total kinetic energy of the system, while Fi is the
force acting on the system. Usually, the force Fi is decomposed of conservative
forces, i.e., forces that are derivable from a potential energy, and remaining
part F e

i , consisting of dissipative and generalized external forces as

Fi = −∂V

∂qi
+ F e

i , i = 1, 2, · · · , n,

with the potential energy function V (q).
Defining the Lagrangian function L0(q, q̇) as T (q, q̇) − V (q), one arrives

at the Euler-Lagrange equations

d

dt

(
∂L0

∂q̇i

)
− ∂L0

∂qi
= F e

i , i = 1, 2, · · · , n. (2.1)

In general, for a mechanical system with a Lagrangian L(q, q̇,u) depending
directly on ui corresponding to the generalized external force F e

i , we obtain
the equation of motion as follow:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, 2, · · · , n. (2.2)

Notice that (2.1) can be regarded as a special case of (2.2) by taking the
Lagrangian

L(q, q̇,u) = L0(q, q̇) +
n∑

i=1

qiui, (2.3)

where ui is decomposed of the control input variable τi and external input
disturbance di, i.e., u = τ +d. We will call (2.2) a Lagrangian control system,
in short Lagrangian system.
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Let us now formulate a Hamiltonian control system. For the Lagrangian
control system of (2.2), the generalized momentum is defined as follows:

pi =
∂L(q, q̇,u)

∂q̇i
, i = 1, 2, · · · , n. (2.4)

In general, since the n×n matrix with (i, j)-th element ∂2L
∂q̇i∂q̇j

will be nonsin-

gular everywhere, Hamiltonian function H(q, p, u) is defined as the Legendre
transform of L(q, q̇, u), i.e.,

H(q,p,u) =

n∑
i=1

piq̇i − L(q, q̇,u), (2.5)

where q̇ and p are related by (2.4). Here, with (2.4) and (2.5), the Lagrangian
control system (2.2) can be transformed into the Hamiltonian control system
as following forms:

q̇i =
∂H(q,p,u)

∂pi
(2.6)

ṗi = −∂H(q,p,u)

∂qi
. (2.7)

As a matter of fact, (2.7) follows from substituting (2.4) into (2.2), while
(2.6) follows from (2.5). Also, above Hamiltonian control system is called as
Hamiltonian system briefly. The main advantage of Hamiltonian system in
comparison with Lagrangian system is that Hamiltonian system immediately
constitutes a control system in standard state space form, with state variables
(q, p). In particular, if L(q, q̇,u) is given as in (2.3), then it immediately
follows that

H(q, p, u) = H0(q, p)−
n∑

i=1

qiui,

where H0(q, p) is the Legendre transform of L0(q, q̇).

2.2.1 Lagrangian System

To begin with, let us obtain the Lagrangian system (Lagrangian control sys-
tem) for typical mechanical systems. The kinetic energy of mechanical system
is characterized by using Inertia matrix M(q). If the Lagrangian is given as
follows:

L(q, q̇,u) =
1

2
q̇T M(q)q̇ − V (q) + qT u, (2.8)

then we can obtain the description of Lagrangian system using (2.2) as follows:

M(q)q̈ +

[
Ṁ(q)− 1

2

∂

∂q

{
q̇T M(q)

}]
q̇ +

∂V (q)

∂q
− u = 0, (2.9)
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because the components of (2.2) are calculated as following forms:

d

dt

(
∂L(q, q̇, u)

∂q̇

)
=

d

dt
(M(q)q̇)

∂L(q, q̇,u)

∂q
=

1

2

[
∂

∂q

{
q̇T M(q)

}]
q̇ − ∂V (q)

∂q
+ u.

If the Coriolis and centrifugal matrix is defined as following form:

C(q, q̇) = Ṁ(q)− 1

2

∂

∂q

{
q̇T M(q)

}
, (2.10)

and the gravitational torque/force is defined as g(q) =
∂V (q)

∂q with u = τ −d,

then Lagrangian system (2.9) is simplified as following well-known equation:

M(q)q̈ + C(q, q̇)q̇ + g(q) + d = τ , (2.11)

where d is the unknown external input disturbance and τ is control input.
Here, we should notice that the sign of unknown external input disturbance
d is of no importance.

2.2.2 Hamiltonian System

First of all, the Hamiltonian is derived from the generalized momentum (2.4)
and Legendre transform (2.5) as follows:

H(q,p,u) =
1

2
pT M−1(q)p + V (q)− qT u. (2.12)

Next, let us express the Hamiltonian system (Hamiltonian control system) for
a mechanical system as simple as possible. When the Hamiltonian is given as
(2.12), the Hamiltonian system (2.6) and (2.7) are calculated as follows:

q̇T =
∂H(q, p, u)

∂pT

= pT M−1(q)

ṗT = −∂H(q, p,u)

∂qT

= −1

2
pT

[
∂M−1

∂q1
p| . . . |∂M−1

∂qn
p

]
− ∂V (q)

∂qT
+ uT .

By using ∂M−1

∂qi
= −M−1 ∂M

∂qi
M−1, above equation can be rewritten as

ṗ =
1

2

[
∂M

∂q1
q̇| . . . |∂M

∂qn
q̇

]T

M−1(q)p− g(q) + u.

=
1

2

[
∂

∂q

{
q̇T M(q)

}]
M−1(q)p− g(q) + u. (2.13)
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Here, we should note that the derivative of Inertia matrix can be decomposed
like this

Ṁ(q) =
1

2

[
∂

∂q

{
q̇T M(q)

}]
+

1

2

[
∂

∂q

{
q̇T M(q)

}]T

. (2.14)

Finally, if we introduce the Coriolis and centrifugal matrix (2.10) to
above equations, then the Hamiltonian system is described with coordinates
(q1, q2, . . . , qn, p1, p2, . . . , pn) as follows:

q̇ = M−1(q)p

ṗ = CT (q, q̇)M−1(q)p− g(q) + d + τ ,
(2.15)

using u = τ + d in (2.13). Additionally, we can obtain the following Lemma
for the relationship between Inertia matrix and Coriolis and centrifugal one.

Lemma 1. For Lagrangian system (2.11) and Hamiltonian system (2.15), the
following properties are always satisfied:

1. Ṁ(q) = C(q, q̇) + CT (q, q̇).
2. Ṁ(q)− 2C(q, q̇) is skew symmetric.
3. Ṁ(q)− 2CT (q, q̇) is skew symmetric.

Above Lemma can be easily proved using (2.10) and (2.14). Also, above
Lemma plays a core role in proving either the stability or optimality in fol-
lowing sections.

2.3 Set-Point Regulation Control

In this section, we survey the set-point regulation (point-to-point) position
control for Hamiltonian systems. The stability achieved by applying a  PD
control to Hamiltonian system was investigated for the first time by Arimoto
et al. in [2, 60]. Also, Van der schaft showed in [64, 65] that the optimality for
nonlinear systems can be accomplished by the solution for Hamilton-Jacobi
(HJ) equation. Since it is hard to solve directly the HJ equation, however, the
approximation method to solve HJ equation was suggested for Hamiltonian
system by Choi et al. in [12].

2.3.1 Global Asymptotic Stability [Arimoto et al.]

For Hamiltonian system (2.15), assume that there exist no gravity force and
external disturbance, i.e., g(q) =  0 and d = 0. Putting a  PD control as
following form:

τ = −KD ̇q −KP (q − qs)
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into (2.15), the closed-loop control system is obtained as follows:

q̇ = M−1(q)p

ṗ = CT (q, q̇)M−1(q)p−KDM−1(q)p−KP (q − qs),
(2.16)

where KD > 0,KP > 0 are constant diagonal gain matrices and qs is the
set-point to be regulated. Now, it is possible to prove the GAS of equilibrium
point (p = 0, q = qs) with an aid of Lyapunov direct method. If the following
Lyapunov function

V (p, q) =
1

2
pT M−1(q)p +

1

2
(q − qs)

T KP (q − qs) (2.17)

is utilized, then its time derivative is obtained along the solution trajectory
of (2.16) as follows:

V̇ = pT M−1(q)ṗ +
1

2
pT Ṁ

−1
(q)p + (q − qs)

T KP q̇

= pT M−1(q)CT (q, q̇)M−1(q)p

−pT M−1(q)KDM−1(q)p +
1

2
pT Ṁ

−1
(q)p.

Since Ṁ
−1

= −M−1ṀM−1 and Ṁ(q) − 2CT (q, q̇) is skew symmetric as
stated in Lemma 1, it is easy to see that

V̇ =
1

2
pT M−1(q)

[
2CT (q, q̇)− Ṁ(q)

]
M−1(q)p

−pT M−1(q)KDM−1(q)p

= −pT M−1(q)KDM−1(q)p. (2.18)

At this stage, it is necessary to recall the well-known LaSalle Theorem (In-
variance Theorem). If there exists such a function V (x) defined in a certain
domain Ω of the state space of x = (p, q) containing the equilibrium point
x0 = (0, qs), then for any initial condition x(0) = (p(0), q(0)) in a neighbor-
hood of x0, the solution trajectory (p(t), q(t)) of equation (2.16) approaches
asymptotically to the maximal invariant set M contained in the set

E =
{

x = (p, q) ∈ Ω : V̇ = 0
}

.

In our case, according to equation (2.18), V̇ = 0 means p = 0 because KD >
0. Therefore, it holds along any solution trajectory in E that

ṗ = −KP (q − qs).

This in turn implies that M is composed of the single point x0 = (p = 0, q =
qs). Also, since Lyapunov function (2.17) is unbounded function for x, i.e.,
V →∞ as |x| → ∞, the global asymptotic stability (GAS) of the equilibrium
point x0 = (0, qs) can be proved by PD control.
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2.3.2 Direct H∞ Control [Choi et al.]

For Hamiltonian system (2.15), let us assume that there exists no gravity
force, i.e., g(q) = 0. Since the equilibrium point is p = 0 and q = qs, if we
define the state vector as follows:

x 
.
= 

[
x1

x2

]
= 

[
q − qs

p 

]  
∈ '2n,

then state space representation of Hamiltonian system (2.15) can be written
as follows:

ẋ = A(q, q̇)x + Bd + Bτ ,

where

A(q, q̇) =

[
0 M−1(q)

0 CT (q, q̇)M−1(q)

]
B =

[
0
I

]
.

Here, we should notice that A(q, q̇) is function of state vector, because q(=
qs + x1) and q̇(= M−1(x1 + qs)x2) are the function of state vector.1 Let us
consider the typical H∞ Performance Index (PI) as following form:∫ ∞

0

[
xT Qx + uT Ru

]
dt ≤ γ2

∫ ∞

0

|d|2dt (2.19)

where Q is the state weighting matrix and R the control input weighting.
The Hamilton-Jacobi (HJ) equation for above PI can be found in following
Lemma, also in [64].

Lemma 2. Let γ > 0, Suppose there exists a smooth function V (x) > 0 with
V (0) = 0 that satisfies

HJ = V xAx+
1

2γ2
V xBBT V T

x −
1

2
V xBR−1BT V T

x +
1

2
xT Qx = 0, (2.20)

where V x
.
= ∂V

∂xT is a row vector, then the following control law

τ = −R−1BT V T
x (2.21)

minimizes the H∞ PI (2.19) with a given L2-gain γ.

1 The set-point qs is a constant vector.
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Approximated Solution of Hamilton-Jacobi (HJ) Equation 
[van der Schaft]

Consider the Hamiltonian vector fields on Hamilton-Jacobi equation (2.20)
with Hamiltonian H :  N2n → ' and equilibrium z0,

ż = XH(z), XH(z0) = 0,

and local coordinate system of Hamiltonian vector fields is
(x1, x2, . . . , xn, λ1 = ∂V

∂x1
(x), λ2 = ∂V

∂x2
(x), . . . , λn = ∂V

∂xn
(x)) and the

vector fields take the well known local form as

ẋi =
∂H
∂λi

(x, λ)

λ̇i = −∂H
∂xi

(x,λ) i = 1, 2, . . . , n.

Now, suppose that z0 is a hyperbolic equilibrium for XH, i.e., the Jacobian
matrix DXH(z0) given as[

ẍ

λ̈

]
=

[
∂

∂xT

(
∂H
∂λ

)
∂

∂λT

(
∂H
∂λ

)
− ∂

∂xT

(
∂H
∂x

) − ∂

∂λT

(
∂H
∂x

)] [
ẋ

λ̇

]
, (2.22)

has no imaginary eigenvalues. As a matter of fact, the matrix of (2.22) is
called as the Hamiltonian matrix. Also, using the definition of local coordinate
λi = ∂V

∂xi
, the V T

x can be represented by the series expansion at an equilibrium
point z0 as follow:

λ̇ =
d

dt
V T

x =
d

dt

[
V T

x (z0) +
∂V x

∂x
(z0)x +

1

2!

∂2V x

∂x2
(z0)x

2 +
1

3!

∂3V x

∂x3
(z0)x

3 . . .

]
.

If the higher order terms are neglected, then the approximated relation is
obtained as follow:

λ̇ ≈ d

dt

[
V T

x (z0) +
∂V x

∂x
(z0)x

]
.

Here, without loss of generality, we can let the equilibrium as z0 = 0, i.e.,
x = 0 and λ = V T

x (0) = 0. Therefore, we can get the following:

λ̇ ≈ d

dt

(
∂V x

∂x
(0)x

)
,

=
∂V x

∂x
(0)ẋ,

=

[
∂

∂x

(
∂V

∂xT

)]
(0)ẋ,

.
= P ẋ
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where P is a  solution of Riccati operator2 for Hamiltonian matrix (2.22).
Actually, this method to solve HJ equation is similar to well-known sweep
method in solving a Riccati equation for time-invariant linear system.

Hamiltonian Matrix for Set-Point Regulation Control

For Hamilton-Jacobi equation of (2.20), by letting λT =  V x, we can rewrite
the Hamilton-Jacobi (HJ) equation as follows

H(x,λ) = λT A(q, ̇q)x +
1

2γ2
λT BBT λ− 1

2
λT BR−1BT λ +

1

2
xT Qx = 0.

First, we get the following by a differentiation:

∂H
∂λT

= xT AT (q, q̇) +
1

γ2
λT BBT − λT BR−1BT ,

also, we can calculate the followings:

∂

∂xT

(
∂H
∂λ

)
=

∂

∂xT

[(
∂H
∂λT

)T
]

=
∂

∂xT
[A(q, q̇)x] (2.23)

∂

∂λT

(
∂H
∂λ

)
=

∂

∂λT

[(
∂H
∂λT

)T
]

=
1

γ2
BBT −BR−1BT . (2.24)

Second,

∂H
∂xT

= λT A(q, q̇) + xT Q

also,

∂

∂λT

(
∂H
∂x

)
=

∂

∂λT

[(
∂H
∂xT

)T
]

=
∂

∂λT

[
AT (q, q̇)λ

]
(2.25)

∂

∂xT

(
∂H
∂x

)
=

∂

∂xT

[(
∂

∂xT

)T
]

= Q. (2.26)

2 See chapter 13 in [67] for more detail explanation
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Therefore, two components (2.23) and (2.25) of Hamiltonian matrix around
an equilibrium point (x = 0, λ = 0) can be calculated as following set:[

∂

∂xT

(
∂H
∂λ

)]
(0,0) = A(qs,0),[

∂

∂λT

(
∂H
∂x

)]
(0,0) = AT (qs,0).

Therefore, the Hamiltonian matrix for set-point regulation control has the
following form:

P = Ric

[
A(qs,0) 1

γ2 BBT −BR−1BT

−Q −AT (qs,0)

]
. (2.27)

where P is a solution of Riccati operator for above Hamiltonian matrix. As
a matter of fact, the symmetric matrix P =

[
∂

∂x

(
∂V

∂xT

)]
(0) is the stabilizing

solution of an algebraic Riccati equation, i.e., the Hessian matrix of Lyapunov
function V (x) at x = 0.

The solution P of Riccati equation depends only on the set-point (qs) as
shown in (2.27). Since V T

x ≈
[

∂
∂x

(
∂V

∂xT

)]
(0)x = Px, therefore, the control

input (2.21) has the following form:

τ = −R−1BT Px. (2.28)

Here, we only need to solve Riccati equation (2.27) once for the set-point.
Also, the Lyapunov function can be estimated as V (x) ≈ 1

2xT Px. Till now,
we showed that an approximate solution of HJ equation (2.20) is equal to
a solution of Riccati operator for Hamiltonian matrix. In other words, this
section suggests an optimal control method for the set-point regulation control
system.

2.4 Trajectory Tracking Control

Trajectory tracking control is basically different from the set-point regulation
control in that the desired configuration, velocity and its acceleration profiles
are added to typical Lagrangian systems. As a matter of fact, putting the
desired configuration, velocity and acceleration into Lagrangian system makes
it difficult to prove the stability or optimality of the controller. Following
sections explain briefly the optimal control and H∞ control as a part of a
modified computed torque controller (Modified-CTC), respectively.

2.4.1 Optimal Control of a Modified-CTC [Dawson et al.]

There has been much discussion related to the computed-torque control tech-
nique. Also, there has been some works related with applying optimal control
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technique to Lagrangian systems, especially robotic manipulators, after it has
been feedback linearized. The optimal control using a modified computed-
torque controller (Modified-CTC) was proposed in [18]. To be an optimal
control for a given performance index, the Hamilton-Jacobi-Bellman (HJB)
equation should be solved to achieve the optimality. However, it is difficult to
solve HJB equation analytically, because HJB equation is the form of nonlin-
ear partial differential equation (NPDE).

For Lagrangian systems (2.11), let us assume that there exist no external
disturbances, i.e., d(t) = 0. Also, the errors should be defined to deal with

trajectory tracking control system, i.e., e
.
= qd − q and ė

.
= q̇d − q̇. If we

adopt the modified computed-torque control input as following form:

τ = M(q)(q̈d + KP ė) + C(q, q̇)(q̇d + KP e) + g(q)− u, (2.29)

where u is an auxiliary control input vector, then the resultant system dy-
namics is given by

M(q)(ë + KP ė) + C(q, q̇)(ė + KP e) = u. (2.30)

Here, if we define the state vector as

x #

[
x1

x2

]
=

[
e

ė

]
∈ '2n,

then the state space representation of the system (2.30) can be simply written
by

ẋ = A(x, t)x + B(x, t)u (2.31)

where

A(x, t) =

[
0 I

−M−1CKP −M−1C −KP

]
B(x, t) =

[
0

M−1

]
.

Also, we should notice that A(x, t) and B(x, t) are functions of time and
state vector, because q(= qd−x1) and q̇(= q̇d−x2) are the function of state
vector and time3. Let us consider the quadratic performance index (PI) as
following form: ∫ ∞

0

[
xT Q(x, t)x + uT R(x, t)u

]
dt (2.32)

where Q(x, t) is the state weighting matrix and R(x, t) the auxiliary control
input weighting. The HJB equation for the above PI (2.32) can be found in
the following Lemma, also in [18].

3 The desired configuration and velocity (qd, q̇d) are function of time.
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Lemma 3. Suppose there exists a smooth function V (x, t) > 0 with V (0, t) =
0 that satisfies

HJB = Vt + V xAx− 1

2
V xBR−1BT V T

x +
1

2
xT Qx = 0, (2.33)

where Vt = ∂V
∂t and V x = ∂V

∂xT , then the auxiliary control

u = −R−1BT V T
x (2.34)

minimizes the PI (2.32).

To make active use of above Lemma, Dawson et al. suggested the Lyapunov
function V (x, t) = 1

2xT P (x, t)x for tracking system model (2.31) as following
form:

P (x, t) =

[
KP MKP + KP K KP M

MKP M

]
, (2.35)

where the positive definiteness of P (x, t) requires the condition of K > 0.
Here, the tracking system model (2.31) and the Lyapunov matrix (2.35) were
slightly changed in that KP > 0 is a diagonal matrix, not a scalar α > 0
in [18, 50]. From now on, we obtain the differential Riccati equation from
HJB (2.33). First, we simplify the HJB equation, which is indeed a nonlinear
partial differential equation, to an ordinary matrix differential equation, i.e.,
the differential Riccati equation. Note that

Vt =
1

2
xT ∂P

∂t
x, V x =

1

2
xT ∂P

∂xT
x + xT P

and P (x, t) is not a function of x2 = ė, then we have the following:

V x =
1

2
xT

[
∂P
∂xT

1

x 0
]

+ xT P .

Hence,

V xAx =
1

2
xT PAx +

1

2
xT AT Px +

1

2
xT

[
∂P
∂xT

1

x 0
] (

x2

∗
)

=
1

2
xT

{
PA + AT P +

∂P

∂xT
1

ẋ1

}
x

and

Vt + V xAx =
1

2
xT

{
∂P

∂t
+

∂P

∂xT
1

ẋ1 + PA + AT P

}
x

=
1

2
xT

{
Ṗ + PA + AT P

}
x.

Also, V xB is simplified to
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V xB = xT PB +
1

2
xT

[
∂P

∂xT
x

]
B = xT PB

since [
∂P

∂xT
x

]
B =

[
∂P
∂xT

1

x 0
] [

0
M−1

]
= 0.

Hence, the HJB (2.33) is arranged to:

1

2
xT

{
Ṗ + PA + AT P − PBR−1BT P + Q

}
x = 0,

also, it brings the following differential Riccati equation

Ṗ + AT P + PA− PBR−1BT P + Q = 0 (2.36)

because the HJB equation should hold for all x.
As a matter of fact, for arbitrarily given weighting matrices Q(x, t), R(x, t)

in a quadratic PI (2.32), it is impossible for the Lyapunov matrix (2.35) to be
a solution of the differential Riccati equation (2.36). However, the weighting
matrices Q and R can be inversely found from the differential Riccati equation
and Lyapunov function as suggested in following Theorem.

Theorem 1. Assume that there exists a Lyapunov matrix P (x, t) (2.35) for
Lagrangian systems (2.31). If the control input weighting is defined as follow-
ing diagonal constant matrix:

R = K−1 > 0, (2.37)

then the state weighting matrix can be inversely obtained from the differential
Riccati equation (2.36) as follows:

Q =

[
K2

P K 0
0 K

]
> 0, (2.38)

where Q is a positive definite and diagonal constant matrix.

Proof. Since the differential Riccati equation (2.36) can be rewritten as
following form:

Ṗ + AT P + PA− PBKBT P + Q = 0 (2.39)

by definition of R, we have only to obtain the matrix Q from above matrix
equation. By using the characteristics Ṁ−CT−C = 0 of Lagrangian system,
the following can be firstly computed

Ṗ + AT P + PA =

[
0 KP K

KP K 0

]
.
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Also, the remaining term is

PBKBT P =

[
K2

P K KP K

KP K K

]
.

Hence, the matrix Q (2.38) is derived from (2.39) and it is a positive definite
and diagonal constant matrix. %

For constant and diagonal weighting matrices Q and R in above Theorem,
the Lyapunov matrix satisfies the differential Riccati equation, hence, the
auxiliary control (2.34) must be an optimal one for a PI (2.32). Also, we
should notice that the auxiliary controller is the PD one. Finally, the modified
computed-torque controller (2.29) has the following form:

τ = M(q)(q̈d + KP ė) + C(q, q̇)(q̇d + KP e) + g(q)

+K (ė + KP e) . (2.40)

To implement the optimal control of a modified-CTC, the dynamic param-
eters such as M(q),C(q, q̇) and g(q) should be exactly identified in advance.
If not, the optimality of controller can not be achieved for a given PI (2.32).
Basically, the robust control such as H∞ should be utilized to cope with these
parameter uncertainties because the controller (2.40) does not assure the ro-
bustness for uncertain parameters. In [48, 49], Park and Chung suggested the
H∞ control of a modified-CTC against external disturbances and parameter
uncertainties.

2.4.2 H∞ Control of a Modified-CTC [Park and Chung]

The advent of linear H∞ control in [67] brought increasing attention for non-
linear H∞ control problem. In the meantime, the nonlinear H∞ control for
full state and output feedback cases were solved by Van der Schaft[64] and
Isidori[29], respectively. To achieve the nonlinearH∞ controller, the Hamilton-
Jacobi-Isaacs (HJI) equation should be solved to assure the H∞ optimality
property. However, it is also a hard problem to solve HJI equation because
the HJI equation is NPDE.

Similar to an optimal control of a modified-CTC in previous section, if we
adopt the modified computed-torque control (Modified-CTC) input as follow-
ing form:

τ = M̂(q)(q̈d+KP ė+KIe)+Ĉ(q, q̇)(q̇d+KP e+KI

∫
e)+ĝ(q)−u, (2.41)

where u is the auxiliary control input and (M̂ , Ĉ, ĝ) are the estimations for
(M ,C, g), then the resultant system dynamics is given by

M(q)(ë + KP ė + KIe) + C(q, q̇)(ė + KP e + KI

∫
e) = u + w, (2.42)
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with

w = M̃(q)(q̈d + KP ė + KIe) + C̃(q, q̇)(q̇d + KP e + KI

∫
e) + g̃(q) + d(t).

(2.43)

where M̃(q) = M(q) − M̂(q), C̃(q, q̇) = C(q, q̇) − Ĉ(q, q̇) and g̃(q) =
g(q)− ĝ(q). As a matter of fact, w of (2.43) is defined as a new disturbance
including the model uncertainties and external disturbances. Here, if we define
the state vector like this

x #

x1

x2

x3

 =

∫
edt
e

ė

 ∈ '3n,

then the state space representation of the system (2.42) can be simply written
by

ẋ = A(x, t)x + B(x, t)w + B(x, t)u (2.44)

where

A(x, t) =

 0 I 0
0 0 I

−M−1CKI −M−1CKP −KI −M−1C −KP


B(x, t) =

 0
0

M−1

 .

Let us consider the typical H∞ performance index (PI) as following form:∫ ∞

0

[
xT Q(x, t)x + uT R(x, t)u

]
dt ≤ γ2

∫ ∞

0

wT wdt. (2.45)

The HJI equation for above PI can be found in the following Lemma, also in
[47].

Lemma 4. Let γ > 0, Suppose there exists a smooth function V (x, t) > 0
with V (0, t) = 0 that satisfies

HJI = Vt + V xAx +
1

2γ2
V xBBT V T

x −
1

2
V xBR−1BT V T

x +
1

2
xT Qx = 0,

(2.46)
where Vt = ∂V

∂t and V x = ∂V
∂xT , then the auxiliary control

u = −R−1BT V T
x (2.47)

minimizes the H∞ PI (2.45) with a given L2-gain γ.
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Park and Chung [47] suggested a Lyapunov function V (x, t) =
1
2xT P (x, t)x for Lagrangian systems (2.44) as following form:

P (x, t) =

KIMKI + KIKP K KIMKP + KIK KIM

KP MKI + KIK KP MKP + KP K KP M

MKI MKP M

 , (2.48)

where the positive definiteness of P (x, t) requires the following conditions

1. K, KP ,KI > 0 are constant diagonal matrices,
2. K2

P > 2KI .

As a matter of fact, the Lagrangian system (2.44) and the Lyapunov matrix
(2.48) were slightly changed in that KP and KI are diagonal matrices, not
scalars kv and kp in [47], respectively. From now on, we are to obtain the
differential Riccati equation from HJI one (2.46). First, we simplify the HJI
equation to a matrix differential Riccati one. Note that

Vt =
1

2
xT ∂P

∂t
x, V x =

1

2
xT ∂P

∂xT
x + xT P ,

here, since P (x, t) is not a function of x3 = ė, the following can be obtained:

V x =
1

2
xT

[
∂P
∂xT

1

x ∂P
∂xT

2

x 0
]

+ xT P .

Then

V xAx =
1

2
xT PAx +

1

2
xT AT Px +

1

2
xT

[
∂P
∂xT

1

x ∂P
∂xT

2

x 0
] x2

x3

∗


=

1

2
xT

{
PA + AT P +

2∑
k=1

∂P

∂xT
k

ẋk

}
x

and

Vt + V xAx =
1

2
xT

{
∂P

∂t
+

2∑
k=1

∂P

∂xT
k

ẋk + PA + AT P

}
x

=
1

2
xT

{
Ṗ + PA + AT P

}
x.

Also, V xB is simplified to

V xB = xT PB +
1

2
xT

[
∂P

∂xT
x

]
B = xT PB,

because
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[
∂P

∂xT
x

]
B =

[
∂P
∂xT

1

x ∂P
∂xT

2

x 0
]  0

0

M−1

 = 0.

Hence, the HJI equation (2.46) is arranged to:

1

2
xT

{
Ṗ + PA + AT P − PBR−1BT P +

1

γ2
PBBT P + Q

}
x = 0,

also, it brings the following differential Riccati equation

Ṗ + AT P + PA− PBR−1BT P +
1

γ2
PBBT P + Q = 0, (2.49)

because the HJI equation should hold for all x.
For arbitrarily given weighting matrices Q(x, t) and R(x, t), the Lyapunov

matrix (2.48) does not always satisfy the differential Riccati equation (2.49)
as well. Similarly to Theorem 1 in previous section, the weighting matrices Q

and R will be inversely found from the differential Riccati equation.

Theorem 2. Assume that there exists a Lyapunov matrix P (x, t) (2.48) for
Lagrangian systems (2.44). If the control input weighting is defined as follow-
ing matrix:

R =

(
K +

1

γ2
I

)−1

, (2.50)

then the state weighting matrix can be inversely obtained from the differential
Riccati equation (2.49) as follows:

Q =

K2
IK 0 0

0 (K2
P − 2KI)K 0

0 0 K

 > 0, (2.51)

where Q is a positive definite, diagonal and constant matrix.

Proof. Since the differential Riccati equation (2.49) can be simplified to

Ṗ + AT P + PA− PBKBT P + Q = 0 (2.52)

by definition of R, we have only to obtain the matrix Q from above matrix
equation. By using the characteristics Ṁ−CT−C = 0 of Lagrangian system,
the following can be firstly computed

Ṗ + AT P + PA =

 0 KIKP K KIK

KIKP K 2KIK KP K

KIK KP K 0

 .

Also, the remaining term is
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PBKBT P =

 K2
IK KIKP K KIK

KIKP K K2
P K KP K

KIK KP K K

 .

Hence, the matrix Q found from (2.52) has the form of (2.51). Since K2
P >

2KI , it is a positive definite, diagonal and constant matrix. %

For the constant weighting matrices Q and R given in above Theorem,
since the Lyapunov matrix (2.48) satisfies the differential Riccati equation
(2.49), hence, the auxiliary control input (2.47) is a H∞ controller for a PI
(2.45), also, the modified computed-torque controller of (2.41) has the follow-
ing form:

τ = M̂(q)(q̈d + KP ė + KIe) + Ĉ(q, q̇)(q̇d + KP e + KI

∫
e) + ĝ(q)

+

(
K +

1

γ2
I

) (
ė + KP e + KI

∫
e

)
, (2.53)

where we should notice that the auxiliary controller (2.47) has the form of
PID one.

2.5 Notes

One aspect of the classical Hamilton-Jacobi theory is concerned with finding
the partial differential equation (HJ equation) satisfied by an optimal return
function (a unique optimal value of the performance index: see chapter 4 in
[8]). There is also a vector partial differential equation satisfied by an optimal
return function. Bellman[1967] has generalized the Hamilton-Jacobi theory to
include multi-variable systems and combinatorial problems and he calls this
overall theory dynamic programming. Also, Bellman theory is associated with
finding the first-order nonlinear partial differential equation (HJB equation).

In certain areas of game theory, one can find problems similar to our gen-
eral control problem, but with the important exception that the behavior of
the target as a function of time is not known to us in advance - there is an op-
ponent capable of influencing the target, who is trying to keep us away from
hitting the target. In other game theory problems, the opponent might be
able to directly affect our state and control input (also, see [41]). Isaacs[1975]
showed how differential game theory can be applied to control theory. Isaacs
theory is also associated with finding the first-order nonlinear partial differ-
ential equation (HJI equation : for more detail, see [29, 65]) derived from the
two player (one player corresponds to the control input, the other player to
the exogenous disturbance input) differential game theory.
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H∞ Optimality of PID Control

3.1 Introduction

The conventional PID controller for automated machines is widely accepted
by industry. According to a survey reported in [3, 66], more than 90% of con-
trol loops used in industry use PID. There are many types of PID controllers,
e.g., PID plus gravity compensator, PID plus friction compensator, PID plus
disturbance observer, etc. The wide acceptance of the PID controller in in-
dustry is based on the following advantages: it is easy to use, each term in the
PID controller has clear physical meanings (present, past and predictive), and
it can be used irrespective of the system dynamics. A H∞ optimal controller
that is robust and performs well has been developed for nonlinear mechanical
control systems; however, it has not been widely accepted in industry since it
is not immediately clear which partial differential equations should be solved.
To transfer H∞ control theory to industry, it is worthwhile to describe the
relationship between H∞ control and PID. In this chapter, we analyze the
H∞ optimality of a PID controller, especially for Lagrangian systems.

Most industrial mechanical systems can be described by the Lagrangian
equation of motion. Conventional PID trajectory tracking controllers are used
because they provide very effective position control in Lagrangian systems.
Unfortunately, they lack an asymptotic stability proof. Under some conditions
with PID gains, the global (or semi-global) asymptotic stability of a PID
set-point regulation controller was proved by [2, 32, 46, 51, 60] for robotic
manipulator systems without external disturbances. However, they did not
deal with a PID trajectory tracking controller, but set-point regulation one.
Also they did not consider the effect of PID gains on the system performance
from the standpoint of H∞ optimality. On the other hand, the robust stability
of decentralized (PID) control for mechanical systems have been tried to prove
it by using either Kharitonov theorem or Lyapunov method in [43, 52, 61].

In optimal control theories, nonlinear H∞ control methods that are robust
and perform well have been proposed over the last decade. The basic control
law theories are found in two papers[29, 64]: one describing the full state feed-

Y. Choi, W.K. Chung: PID Trajectory Tracking Control for Mechanical Systems, LNCIS 298, pp. 29–46, 2004.
Springer-Verlag Berlin Heidelberg 2004



www.manaraa.com

30 3 H∞ Optimality of PID Control

back case, and the other considering the output feedback case. However, the
partial differential Hamilton-Jacobi-Isaacs (HJI) equation must still be solved
in a nonlinear H∞ controller. This is not a trivial problem. There have been
several attempts to solve the HJI equation. The approximation method was
used by [12] to obtain an approximate solution to the Hamilton-Jacobi(HJ)
equation for Lagrangian systems. The concept of extended disturbances, in-
cluding system error dynamics, was developed by [18, 47, 48, 49] to solve the
HJI equation. Finally, the Lyapunov equation was solved instead of the HJI
equation by [59], who suggested that a nonlinear H∞ controller can only be
attained in this manner.

This chapter is organized as follows. Next section deals with the state-
space representation used for trajectory tracking in a Lagrangian system. In
section 3.3, H∞ optimality of a PID controller is proved by inversely finding
the H∞ performance index from the PID control law. Also, an inverse optimal
PID control law is suggested with the necessary and sufficient condition for its
existence in section 3.4. Finally, performance estimation by using performance
index show indirectly the validity of optimality for H∞ performance index.

3.2 State-Space Description of Lagrangian Systems

In general, mechanical systems can be described by the Lagrangian equation
of motion. If the mechanical system with n degrees of freedom is represented
by n generalized configuration coordinates q = [q1, q2, · · · , qn]T ∈ 'n, then
the Lagrangian system is described as

M(q)q̈ + C(q, q̇)q̇ + g(q) + d(t) = τ , (3.1)

where M(q) ∈ 'n×n is Inertia matrix, C(q, q̇)q̇ ∈ 'n Coriolis and centrifugal
torque vector, g(q) ∈ 'n gravitational torque vector, τ ∈ 'n the control input
torque vector and d(t) unknown external disturbances. Disturbances exerted
on the system can be caused by the friction nonlinearity, parameter pertur-
bation, etc. Also, the extended disturbance can be defined for the trajectory
tracking control, including the external disturbance, as following form:

w

(
t, ė, e,

∫
e

)
= M(q) (q̈d + KP ė + KIe)

+C(q, q̇)

(
q̇d + KP e + KI

∫
e

)
+ g(q) + d(t), (3.2)

where KP , KI are diagonal constant matrices, e = qd − q is the configura-
tion error and desired configurations (qd, q̇d, q̈d) are functions of time. Hence,
the extended disturbance w is the function of time, configuration error, its
derivative and integral because q(= qd − e) and q̇(= q̇d − ė) are the function
of time, configuration error and its derivative. If the extended disturbance
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defined above is used in the Lagrangian system of (3.1), then the trajectory
tracking system model can be rewritten as

M(q)ṡ + C(q, q̇)s = w

(
t, ė, e,

∫
e

)
+ u, (3.3)

where u = −τ and s = ė + KP e + KI

∫
edt.

If the state vector is defined for the tracking system model (3.3) as follows:

x
.
=

x1

x2

x3

 =

∫
e

e

ė

 ∈ '3n (3.4)

then the state space representation of Lagrangian system can be obtained as
the following form:

ẋ = A(x, t)x + B(x, t)w + B(x, t)u, (3.5)

where

A(x, t) =

 0 I 0
0 0 I

−M−1CKI , −M−1CKP −KI , −M−1C −KP


and

B(x, t) =

 0
0

M−1

 .

This is one of generic forms defined by [49] for Lagrangian system. An available
characteristics for Lagrangian system is that the equality (Ṁ = C + CT ) is
always satisfied. This characteristics offers the clue to solve the inverse optimal
problem for above Lagrangian system (3.5).

Remark 1. If the controller stabilizes the trajectory tracking system model
(3.5), then it makes the original system (3.1) stable because the boundedness
of a state vector x implies those of q and q̇. However, the converse is not true.

Remark 2. For the set-point regulation control, the system model (3.1) can be
rewritten by using the state vector q̇ as follows:

M(q)q̈ + C(q, q̇)q̇ = w1(t, q) + τ , (3.6)

where w1(t, q) = −g(q) − d(t). On the other hand, for the trajectory track-
ing control, we obtained the system model (3.3) by using the state vector
s. Here, above two system models (3.3) and (3.6) show the same dynamic
characteristics such as M(q)−1C(q, q̇).
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3.3 ISS and H∞ Optimality of PID Control

Among the stability theories for control systems, the notion of input-to-state
stability (ISS) in [1, 10, 38, 57, 58] is more convenient to deal with the distur-
bance input than other theories. When there exist unknown bounded inputs
such as perturbations and external disturbances acting on systems, the be-
havior of the system should remain bounded. Also, when the set of inputs
including the control, perturbation and disturbance go to zero, the behavior
of system tends toward the equilibrium point. This ISS notion is helpful to un-
derstand the effect of inputs on system states. Moreover, Krstic et al. showed
in [36, 37] that the backstepping controller designed using the ISS notion is
optimal for the performance index found inversely from the controller. This
has offered a useful insight from which we can show the H∞ optimality of
PID control for Lagrangian systems. The basic characteristics and properties
on the ISS are summarized in the followings.

The control system is said to be extended disturbance input-to-state sta-
ble(ISS) if there exist a class KL function β and a class K function γ such
that the solution for (3.5) exists for all t ≥ 0 and satisfies

|x(t)| ≤ β(|x(0)|, t) + γ

(
sup

0≤τ≤t
|w(τ)|

)
, (3.7)

for an initial state vector x(0) and for an extended disturbance vector w(·)
piecewise continuous and bounded on [0,∞). Especially, the ISS becomes
available by using Lyapunov function. For the system (3.5), there exist a
smooth positive definite radially unbounded function V (x, t), a class K∞
function γ1 and a class K function γ2 such that the following dissipativity
inequality is satisfied:

V̇ ≤ −γ1(|x|) + γ2(|w|), (3.8)

if and only if the system is ISS, where V̇ represents the total derivative for
Lyapunov function. Also, suppose that there exists a function V (x, t) such
that for all x and w:

|x| ≥ ρ(|w|) ⇒ V̇ ≤ −γ3(|x|), (3.9)

where ρ and γ3 are class K∞ functions. Then, the system is ISS and even we
can say the globally asymptotic stability(GAS) if the unknown disturbance
input satisfies the condition |x| ≥ ρ(|w|) for an state vector. However, we do
not know whether the extended disturbance w satisfies the condition or not,
hence, only ISS is proved. Above properties on ISS will be utilized in following
sections.

3.3.1 ISS-CLF for Lagrangian Systems

To show the ISS for Lagrangian system, we should find the Lyapunov func-
tion and control law. However, there can be many control laws satisfying the
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ISS and the disturbance is basically unknown. Hence, we need the definition
which can bring the Lyapunov function and a unique control input under the
assumption on the unknown disturbance. Using the ISS, the input-to-state
stabilizable control Lyapunov function, in short ISS-CLF, is defined by [36].
The regular definition for ISS-CLF is as follows: a smooth positive definite ra-
dially unbounded function V (x, t) : '3n ×'+ → '+ is called an ISS-CLF for
(3.5) if there exists a class K∞ function ρ such that the following implication
holds for all x 9= 0 and all w:

|x| ≥ ρ(|w|) ⇒ inf
u

V̇ < 0. (3.10)

The following Theorem suggests both the control law derived from ISS and
an ISS-CLF for Lagrangian system. Here, we show that the modified form of
Lyapunov function suggested by [49] is an ISS-CLF under two conditions.

Theorem 3. Let s # ė + KP e + KI

∫
edt ∈ 'n. If the Lagrangian system

(3.5) is extended disturbance input-to-state stable(ISS), then the control law
should have the following form with α ≥ 1

2 :

u = −αKs− ρ−1(|x|) s

|s| , (3.11)

and V (x, t) = 1
2xT P (x, t)x is an ISS-CLF with α = 1

2 , where

P (x, t) =

KIMKI + KIKP K KIMKP + KIK KIM

KP MKI + KIK KP MKP + KP K KP M

MKI MKP M

 (3.12)

under the following two conditions for P :

1. K,KP ,KI > 0 constant diagonal matrices
2. K2

P > 2KI .

Proof. First, we show that the Lyapunov matrix P (3.12) is positive
definite. If we manipulate the Lyapunov function as following form:

V (x, t) =
1

2
xT P (x, t)x

=
1

2
sT Ms +

1

2

[∫
e

e

]T [
KIKP K KIK

KIK KP K

] [∫
e

e

]
,

then we can see that the Lyapunov function is positive definite under condi-
tions 1 and 2 except x = 0 because the Inertia matrix M is positive definite.
Second, the total derivative of Lyapunov function is given by

V̇ = Vt + V xAx + V xBw + V xBu,

and its components can be calculated using Ṁ −CT −C = 0 as follows:
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Vt + V xAx =
1

2
xT

(
Ṗ + PA + AT P

)
x

=
1

2
xT

 0 KIKP K KIK

KIKP K 2KIK KP K

KIK KP K 0

 x

=
1

2

(
sT Ks−

∫
eT K2

IK

∫
e− eT (K2

P − 2KI)Ke− ėT Kė

)
(3.13)

and

V xB = xT PB = xT [ KI , KP , I ]
T

= sT . (3.14)

Now, the total derivative of Lyapunov function is calculated by using (3.13)
and (3.14) as follows:

V̇ =
1

2

(
sT Ks−

∫
eT K2

IK

∫
e− eT (K2

P − 2KI)Ke− ėT Kė

)
+sT w + sT u < 0,

hence,

1

2
sT Ks+sT w+sT u <

1

2

(∫
eT (K2

IK)

∫
e + eT (K2

P − 2KI)Ke + ėT Kė

)
.

(3.15)
Let us consider only the right hand side of (3.15). Then we can see that it is
always positive definite except x = 0 under conditions 1 and 2. Also, if the
condition |x| ≥ ρ(|w|) of (3.9) is utilized, then the left hand side of (3.15) has
the following form:

1

2
sT Ks + sT w + sT u ≤ 1

2
sT Ks+|s||w|+sT u

≤ 1

2
sT Ks+|s|ρ−1(|x|)+sT u.

Here, above equation should at least be negative semi-definite to satisfy the
ISS of (3.9). Hence, we obtain the control law (3.11) with the condition α ≥ 1

2 .
Also, since the infimum among the control inputs that satisfy (3.15) is achieved
at α = 1

2 , we can know that the definition (3.10) is always satisfied with α = 1
2

for all x 9= 0. Third, the V (x, t) is a differentiable and radially unbounded
function because V (x, t) →∞ as x →∞. Therefore, we conclude that V (x, t)
is an ISS-CLF with α = 1

2 for the Lagrangian system. %

An important characteristics of controller (3.11) is that it has the PID
control type as follows:

u = −
(

αK +
ρ−1(|x|)
|s| I

)(
ė + KP e + KI

∫
edt

)
. (3.16)
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Another characteristics of above controller is that it can be rewritten as the
optimal control type of u = −R−1BT Px by letting

R(x) =

(
αK +

ρ−1(|x|)
|s| I

)−1

,

because BT Px = ė + KP e + KI

∫
edt as shown in (3.14). Strictly speak-

ing, the controller (3.16) is not a conventional PID one since it includes the
unknown function ρ−1(|x|). In the following section, we will find the bounds
and meaning of ρ−1(|x|) in a viewpoint of the optimality of H∞ control.

3.3.2 H∞ Optimality of PID Control Law

To state the optimality of nonlinear H∞ control system suggested in
[29, 64, 65], the Hamilton-Jacobi-Isaacs (HJI) equation which is derived from
the direct optimization for the performance index should be solved, but the
solution of HJI equation is too hard to obtain for general systems, including
Lagrangian system, because it is the multi-variable partial differential equa-
tion. To overcome this difficulty of a direct optimization, Krstic et al showed
in [36] that the inverse optimal problem is solvable if the system is disturbance
input-to-state stable. Also, Park et al showed in [49] that the nonlinear H∞
control problem for robotic manipulators can be solved using the characteris-
tics of Lagrangian system. The HJI equation for the Lagrangian system and
its analytic solution were suggested by [47], but it dealt with the modified
computed torque controller form, not a PID controller type.

Now, we are to show theH∞ optimality of PID control type for Lagrangian
systems by using the control law in Theorem 3. Consider a general H∞ per-
formance index(PI) as following form:

0

PI(t, x, u, w) = lim
t→∞

[
2V (x(t), t) +

∫ t (
xT Q(x)x + uT R(x)u− γ2wT w

)
dσ

]
,

(3.17)
where Q(x) is a state weighting matrix, R(x) control input weighting and
γ means L2-gain. Also, the HJI equation is derived from the optimization
for H∞ performance index, with Lagrangian system constraint of (3.5), as
following form:

HJI = Ṗ + AT P + PA− PBR−1BT P +
1

γ2
PBBT P + Q = 0. (3.18)

As a matter of fact, above HJI equation is equal to the differential Riccati
equation for a linear multi-variable time varying system. Above HJI equation
(3.18) plays important roles which give the H∞ optimality and stability to the
control system. In the next Theorem, we show that the PID control law can
be a minimum solution of H∞ performance index. And it is inverse optimal
in that the state weighting matrix Q(x) and control input one R(x) can be
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found from the gains of controller and even the HJI equation can be obtained
from Q(x).

Theorem 4. For a given Lagrangian system (3.5), suppose that there exists
an ISS-CLF in Theorem 3. If the PID control law (3.16) as following form:

u = −R−1BT Px (3.19)

is utilized with conditions

1. α = 1

2. ρ−1(|x|) ≥ 1
γ2 |s|,

then the controller (3.19) is a solution of the minimization problem for H∞
performance index (3.17) using

Q(x) =−
(
Ṗ + AT P + PA− PBKBT P

)
(3.20)

R(x) =

(
K +

ρ−1(|x|)
|s| I

)−1

. (3.21)

Proof. First, we show that the matrix Q(x) of (3.20) is positive definite
and constant matrix. Let us obtain the state weighting matrix Q(x) using
(3.13) and (3.14) in proof of Theorem 3, then Q(x) is acquired as following
constant matrix:

Q =

K2
IK 0 0

0 (K2
P − 2KI)K 0

0 0 K

 . (3.22)

Hence, Q is a positive definite and constant matrix. This was proved by [48]
for the first time. Second, we prove the H∞ optimality inversely by showing
that a PID control type (3.19) achieves the minimum of the H∞ performance
index. The first condition of α = 1, not 1

2 , makes it possible to solve the
optimization problem, in other words, the optimal α is two times the value
obtained by the definition of ISS-CLF in Theorem 3. This fact was proved
by [36] for the first time. If we put Q into the performance index and use

K = R−1(x)− ρ−1(|x|)
|s| I of (3.21), then we can manipulate the performance

index as follows:
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PI(t, x,u,w) = lim
t→∞

[2V (x(t), t)

−
∫ t

0

xT
[
Ṗ + AT P + PA− PBKBT P

]
xdτ

+

∫ t

0

(
uT R(x)u− γ2wT w

)
dτ

]
= lim

t→∞
[2V (x(t), t)

−
∫ t

0

(
xT

[
Ṗ +AT P +PA

]
x + 2xT PBu + 2xT PBw

)
dτ

+

∫ t

0

(
uT R(x)u + 2xT PBu + xT PBKBT Px

)
dτ

+

∫ t

0

(
2xT PBw − γ2wT w

)
dτ

]
= lim

t→∞

[
2V (x(t), t)− 2

∫ t

0

V̇ dτ

+

∫ t

0

(u + R−1BT Px)T R(u + R−1BT Px)dτ

−γ2

∫ t

0

(
w − 1

γ2
BT Px

)T (
w − 1

γ2
BT Px

)
dτ

−
∫ t

0

(
ρ−1(|x|)
|s| − 1

γ2

)
xT PBBT Pxdτ

]
= 2V (x(0), 0) +

∫ ∞

0

(u + R−1BT Px)T R(u + R−1BT Px)dτ

−γ2

∫ ∞

0

∣∣∣∣w − 1

γ2
BT Px

∣∣∣∣2 dτ

−
∫ ∞

0

(
ρ−1(|x|)
|s| − 1

γ2

)
|s|2dτ. (3.23)

From (3.23), we can see that the minimum for H∞ performance index is
achieved in the case that the control law is (3.19). Also, the worst case dis-
turbance is given by

w∗ =
1

γ2
BT Px

and |w∗| = 1
γ2 |s|. The second condition of ρ−1(|x|) ≥ 1

γ2 |s| should be satisfied

for the minimization of (3.23). Therefore, we conclude that the PID control
law (3.19) minimizes H∞ performance index (3.17) using the given Q and
R(x). %

Remark 3. The condition 2 in Theorem 4 is the design guideline of function
ρ−1(|x|) to be H∞ optimal controller. As a matter of fact, it implies that
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ρ−1(|x|) should not be smaller than at least the magnitude of worst case
disturbance. Here, if we choose the magnitude of worst case disturbance for
the function ρ−1(|x|), in other words, ρ−1(|x|) = |w∗| = 1

γ2 |s|, then the PID

control law (3.19) recovers fortunately the static gain PID one because the
matrix R(x) of (3.21) becomes a constant matrix as follows:

R =

(
K +

1

γ2
I

)−1

. (3.24)

Also, the matrix Q of (3.20) implies the HJI equation of (3.18), though the
HJI is not explicitly utilized to show the H∞ optimality of a PID control law
in Theorem 4.

In a viewpoint of an optimal control theory, the magnitude of a state
weighting Q has the relation with system errors, e.g., if we enlarge the magni-
tude of a state weighting matrix by four times, then the control performance
will be approximately enhanced by two times, in other words, the error will
be approximately reduced by half. This property will be shown through ex-
perimental results later. Therefore, if we are to reduce the error of system,
we should enlarge the magnitude of a matrix K in the state weighting. How-
ever, it reduces the magnitude of a control input weighting matrix R and
produces the bigger control effort. Conversely, if we reduce the magnitude of
K, then the smaller control effort is required and the bigger error is gener-
ated. The common K in the state weighting and the control input weighting
has the trade-off characteristics between the system performance and control
effort. Also, it seems that the L2-gain γ has no the effect on state weighting
and affects only the control input weighting, but it does affect the control
performance by increasing the robustness for disturbances.

3.4 Inverse Optimal PID Control

In the previous section, the H∞ optimality of PID controller for the perfor-
mance index was shown through Theorem 3, 4 and Remark 3. Here, we define
the inverse optimal PID controller using the static gain one in Remark 3 and
summarize its design conditions in following Theorem.

Theorem 5. If the inverse optimal PID controller:

τ =

(
K +

1

γ2
I

)(
ė + KP e + KI

∫
e

)
(3.25)

satisfying next conditions:

1. K, KP , KI > 0, constant diagonal matrices
2. K2

P > 2KI ,
3. γ > 0
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is applied to the Lagrangian system (3.5), then the closed-loop control system
is extended disturbance input-to-state stable(ISS).

Proof. The conditions 1 and 2 assure the existence of Lyapunov matrix
P > 0 by Theorem 3 and the condition 3 means L2-gain in the H∞ perfor-
mance index. If the inverse optimal PID controller (3.25) is applied to the
Lagrangian system (3.5), then we know that the HJI equation of (3.18) is
satisfied by Remark 3. Therefore, along the solution trajectory of (3.5) with
the inverse optimal PID control law, we get the time derivative of Lyapunov
function:

V̇ = Vt + V xAx + V xBu + V xBw

=
1

2
xT

(
Ṗ + AT P + PA

)
x

−xT PBR−1BT Px + xT PBw,

where u = −τ = −R−1BT Px. Here, if above equation is rearranged by using
the HJI (3.18) and Young’s inequality xT PBw ≤ 1

γ2 |xT PB|2 +γ2|w|2, then

we get the following similar to (3.8):

V̇ ≤ −1

2
xT

(
Q + PBKBT P

)
x + γ2|w|2. (3.26)

Since the right hand side of above inequality (3.26) is unbounded function for
x and w respectively, hence, the Lagrangian system with an inverse optimal
PID controller is extended disturbance input-to-state stable(ISS). %

Corollary 1. The inverse optimal PID controller of (3.25) exists if and only if
the Lagrangian system (3.5) is extended disturbance input-to-state stable(ISS).

Proof. The proof consists of Theorem 3, 4, 5 and Remark 3 as follows:

ISS
Th.3−−−−→ Control Law (3.11)

Th.5
# "Th.4

Inverse Optimal PID (3.25) ←−−−−
Re.3

H∞ Optimality

%

By Corollary 1, we showed the necessary and sufficient condition for the
existence of an inverse optimal PID controller. Though the inverse optimal
PID controller guarantees the ISS, it does not give the global asymptotic
stability(GAS). This fact brings the selection guidelines for gains of an inverse
optimal PID control.
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3.4.1 Selection Guidelines for Gains

There are four parameters to adjust the control performance in an inverse
optimal PID control: K,KP , KI and γ. The selection conditions of gains are
suggested using the time derivative of Lyapunov function. First of all, let us
reconsider the extended disturbance of (3.2) as follows:

|w|2 =

∣∣∣∣M (q̈d + KP ė + KIe) + C

(
q̇d + KP e + KI

∫
e

)
+ g + d

∣∣∣∣2
= |MKP ė−Cė + MKIe + Cs + h|2 (by Schwarz inequality)

≤ 5 |MKP ė|2 + 5 |Cė|2 + 5 |MKIe|2 + 5 |Cs|2 + 5 |h|2 , (3.27)

where h = M(q)q̈d+C(q, q̇)q̇d+g(q)+d(t). The following Theorem proposes
the selection guidelines for gains using (3.26) and (3.27).

Theorem 6. Let |M(q)| ≤ m, |C(q, q̇)| ≤ c0|q̇|, K = kI, KP = kP I and
KI = kII ∈ 'n×n. Suppose that the tuning variables1 (γ, k) satisfy following
condition √

k/γ >
√

10c0|q̇|, (3.28)

then the gain kP should be confined to the following constraint:

kP <

√
(k/γ2)− 10c2

0|q̇|2√
10m

, (3.29)

and the gain kI should be confined to the following constraint:

kI <

√
(k/γ2)2 + 10m2k2

P (k/γ2)− k/γ2

10m2
. (3.30)

Proof. First, if we apply |M(q)| ≤ m, |C(q, q̇)| ≤ c0|q̇|, K = kI,KP =
kP I,KI = kII to the extended disturbance (3.27), then it is simplified as
follows:

|w|2 ≤ 5(m2k2
P + c2

0|q̇|2)|ė|2 + 5m2k2
I |e|2 + 5c2

0|q̇|2 |s|2 + 5 |h|2 . (3.31)

Second, if we rewrite the time derivative of Lyapunov function (3.26) using
(3.14) and (3.31), then V̇ is obtained as follows:

1 The tuning variables will be used for performance tuning in next chapter.
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V̇ ≤ −1

2
xT Qx− 1

2
sT Ks + γ2|w|2

= −1

2

(
k|ė|2 + k(k2

P − 2kI)|e|2 + kk2
I

∣∣∣∣∫ e

∣∣∣∣2
)
− 1

2
k|s|2 + γ2|w|2

≤ −1

2

(
k − 10γ2(m2k2

P + c2
0|q̇|2)

) |ė|2
−1

2

(
k(k2

P − 2kI)− 10γ2m2k2
I

) |e|2
−1

2
kk2

I

∣∣∣∣∫ e

∣∣∣∣2
−1

2

(
k − 10γ2c2

0|q̇|2
) |s|2

+5γ2 |h|2 . (3.32)

If the condition (3.28) for tuning variables is satisfied, then the negative def-
initeness of a term |s|2 in (3.32) is assured. Also, we can obtain the upper
bounds of gains kP of (3.29) and kI of (3.30) using the negative definiteness
of each term |ė|2 and |e|2, respectively. %

The condition (3.28) in Theorem 6 means that the relation between tuning
variables should be chosen proportional to |q̇|, but we can not know q̇ before
the experiment. However, the desired configuration derivative q̇d can be ap-
proximately utilized instead of q̇. As the maximum q̇d is faster, the following
relation should hold: √

k/γ ∝ max {|q̇d|} . (3.33)

Also, the condition (3.29) says that the value of kP should be determined
inversely proportional to the maximum eigenvalue of Inertia matrix. Hence,
the large kP can be used for small Inertia systems and vice versa. In general,
since the relation (

√
k/γ) will be chosen large according to (3.28), we can

notice the proportional relation of

kP ∝ (1/m)(
√

k/γ) (3.34)

from the condition (3.29). Also the proportional relation for kI can be found
from (3.30). If we manipulate (3.30) using

√
a2 + b2 ≤ |a| + |b| as following

forms:

kI <

√
(k/γ2)2 + 10m2k2

P (k/γ2)− k/γ2

10m2

<
(k/γ2) +

√
10mkP (

√
k/γ)− (k/γ2)

10m2

=
kP (

√
k/γ)√

10m
,

kI ∝ (kP /m)(
√

k/γ), (3.35)
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then the proportional relation of (3.35) can be found. Hence, the value of kI

should be chosen inversely proportional to m and directly proportional to kP .

Remark 4. Assume that the Lagrangian system (3.5) is extended disturbance
input-to-state stable (ISS) and the configuration velocity is bounded by apply-
ing an inverse optimal PID controller, e.g., |q̇| < cq. If there exists no gravity
torque (g(q) = 0), then the term |h|2 in (3.32) can be upper bounded using
Schwarz inequality as follows:

|h|2 = |M(q)q̈d + C(q, q̇)q̇d + d|2
≤ 3m2|q̈d|2 + 3c2

0c
2
q|q̇d|2 + 3|d|2.

Here, if above inequality is inserted in (3.32), then it is modified to:

V̇ ≤ −1

2

(
k − 10γ2(2m2k2

P + c2
0c

2
q)

) |ė|2
−1

2

(
k(k2

P − 2kI)− 10γ2m2k2
I

) |e|2
−1

2
kk2

I

∣∣∣∣∫ e

∣∣∣∣2
−1

2

(
k − 10γ2c2

0c
2
q

) |s|2
+15γ2m2|q̈d|2
+15γ2c2

0c
2
q|q̇d|2

+15γ2|d|2. (3.36)

Hence, we can mention that it is the reference and external disturbance
input(q̇d, q̈d,d)-to-state(e, ė,

∫
e, s) stable from (3.36), additionally.

3.4.2 Performance Estimation by Optimality

The optimal controller was obtained from the minimization for a performance
index as proved in Theorem 4, hence, the performance index (3.17) can be
rearranged using an inverse optimal PID control (3.25) as follows:

PI(t, x, w) = lim
t→∞

[
2V (x(t), t) +

∫ t

0

(
xT

(
Q + PBR−1BT P

)
x− γ2wT w

)
dσ

]
.

(3.37)
As a matter of fact, the magnitude of performance index remains nearly un-
changed when the controller obtained from optimization is used. Also, if the
applied controller stabilizes the closed system, then the magnitude of extended
disturbance is mainly affected by that of inverse dynamics h in (3.27) accord-
ing to desired configurations, because the errors in (3.27) will be small. Also,
since the extended disturbance will show nearly same magnitude for the same
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desired configurations, the following term dependent on state vector remains
also nearly unchanged in above performance index:∫ t

0

xT (σ)
(
Q + PBR−1BT P

)
x(σ)dσ ≈ a constant. (3.38)

In above equation, the matrix can be defined and decomposed as follows:

Q + PBR−1BT P
.
= KPIKγKPI , (3.39)

where

KPI =

kII 0 0
0 kP I 0
0 0 I



Kγ =


(
k + γ2

kγ2+1

)
I γ2

kγ2+1I γ2

kγ2+1I

γ2

kγ2+1I
(
k + γ2

kγ2+1 − 2kIk
k2

P

)
I γ2

kγ2+1I

γ2

kγ2+1I γ2

kγ2+1I
(
k + γ2

kγ2+1

)
I

 .

Since k2
P > 2kI by the second condition in Theorem 5, the mid matrix Kγ

of (3.39) is hardly affected by gains kP , kI , but by gains k and γ. Therefore,
for a constant k and γ, the following relation can be approximately obtained
from (3.38):

‖KPIx‖ ≈ a constant → ‖x‖ ∝ 1

|KPI | , (3.40)

where ‖.‖ means L2-norm. For example, if we increase the proportional gain
kP by two times, then the integral gain kI should be increased by two times
according to (3.35), also, the size of KPI is increased approximately by two
times. Therefore, the L2-norm performance of state vector is approximately
reduced to a half according to (3.40).

3.4.3 Illustrative Example

To show the validity of performance estimation by optimality in previous
section, we perform a simple simulation for pendulum system as shown in Fig.
3.1. Since Lagrangian equation of motion for pendulum system is described
as follow:

ml2q̈ + mgl sin(q) = τ, (3.41)

the trajectory tracking system model can be obtained as follow:

ml2ṡ = w(t, e, ė) + u,

by defining the extended disturbance and composite error as follows:
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"
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Fig. 3.1. Simple pendulum system

w(t, e, ė) = ml2(q̈d + kP ė + kIe) + mgl sin(q),

s = ė + kP e + kI

∫
edt

u = −τ.
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(a) Desired configuration : qd
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(b) Desired velocity : q̇d

Fig. 3.2. Desired trajectory for pendulum system

First, since the desired trajectory is determined as following fifth-order
polynomial function:

qd(t) =

{
5πt3 − 7.5πt4 + 3πt5, for 0 ≤ t ≤ 1
0.5π − 5π(t− 1)3 + 7.5π(t− 1)4 − 3π(t− 1)5, for 1 ≤ t ≤ 2

the profiles for desired trajectory and its derivative are given smoothly as
shown in Fig. 3.2. Second, the plant parameters and part of gains are deter-
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mined as: m = 1kg, l = 1m, g = 9.806m/s2, k = 10, γ = 0.2. Third, if the
PID controller as following form is applied to above pendulum system (3.41):

τ =

(
k +

1

γ2

) (
ė + kP e + kI

∫
edt

)
, (3.42)

then simulation results are shown in Fig. 3.3 according to the changes of
gains kP and kI . First of all, we should remember the tuning rule (3.35),
in other words, the increment ratios of kP and kI should be identical each
other. Therefore, if the increment ratio of gain kP is one and half times, e.g.,
20 → 30 → 40, then the gain kI should be increased by one and half times
like 100 → 150 → 200.

Whenever kP and kI gains are increased by one and half times like
20|100 → 30|150 → 40|200 for k = 10 and γ = 0.2 as shown in Table
3.1, the L2 norms of state vector are reduced to an approximate two thirds
times (1/1.5) according to (3.40) because |KPI | is increased by one and half
times. The simulation results show that L2 norm of state vector is changed
as 0.676 → 0.471 → 0.361 as shown in Table 3.1. The maximum deviation
between the real performance enhancement and the expected is 13% in Table
3.1. Also, even maximum configuration errors follow the rule (3.40) as shown
in Fig. 3.3 and Table 3.2. The maximum deviation between the real perfor-
mance enhancement for configuration error and the expected is 8.3% in Table
3.2. Additionally, experiment will be performed to show the validity of the
performance estimation by optimality in section 4.4.2.
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Fig. 3.3. Simulation results for pendulum system when k = 10, γ = 0.2
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Table 3.1. The L2-norm of state vector for various kP and kI when k = 10 and
γ = 0.2, where the subscript u or l means the corresponding value of either upper
or lower data

kP |kI ‖x‖ ‖x‖u/‖x‖l Expected

20|100 0.0676
30|150 0.0471

1.435 1.5

40|200 0.0361
1.305 1.5

Table 3.2. The maximum configuration error for various kP and kI when k = 10
and γ = 0.2, where data were obtained from Fig. 3.3

kP |kI ‖e‖∞ ‖e‖∞,u/‖e‖∞,l Expected

20|100 0.0101
30|150 0.0066

1.530 1.5

40|200 0.0048
1.375 1.5

3.5 Summary

This chapter suggested an inverse optimal PID control to track trajectories
in Lagrangian systems. The inverse optimal PID controller exists if and only
if the Lagrangian system is extended disturbance input-to-state stable. First,
we found the Lyapunov function and the control law that satisfy the extended
disturbance input-to-state stability (ISS) by using the characteristics of the
Lagrangian system. Fortunately, the control law has a PID control form and
satisfies the Hamilton-Jacobi-Isaacs (HJI) equation. Hence, the H∞ inverse
optimality of the closed-loop system dynamics was acquired through the PID
controller if several conditions for the control law could be satisfied.
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Performance Limitation and Tuning

4.1 Introduction

Most mechanical systems are described by Lagrangian equation of motion and
their controllers consist of the conventional PID one. In the previous chap-
ter and [10, 14], the inverse H∞ optimality of PID control was proved for
mechanical control systems, inspired by the extended disturbance input-to-
state stability(ISS) of PID control under some conditions for gains. Also, it
was proved that an inverse optimal PID controller exists if and only if the
mechanical control system is extended disturbance input-to-state stable(ISS).
However, an inverse optimal PID controller brings the performance limitation
for trajectory tracking mechanical systems. In this chapter, we derive sev-
eral performance tuning methods of an inverse optimal PID control from its
performance limitation.

There have been many PID gain tuning methods. For the first time, the
PID gain tuning method was suggested by Ziegler and Nichols in [68] based
on the response characteristics of control system. Second, the PID gain tuning
methods using the relay feedback were proposed for process control systems
in [3, 66]. Third, it was shown in [40] that the PID gain tuning using Taguchi
method developed for process control systems could be also applied to me-
chanical systems. Fourth, PID tuning guidelines for robot manipulators were
suggested in [31, 51], however, most existing performance tuning methods are
for just actuators in mechanical system, not for mechanical system itself. In
this chapter, we propose a performance tuning method of an inverse optimal
PID controller for mechanical control systems.

This chapter is organized as follows. First, square/linear performance tun-
ing laws are proposed in section 4.2. Second, compound performance tuning
method unifying square and linear tuning laws is suggested in section 4.3. Fi-
nally, experimental results show the validity of suggested performance tuning
laws in section 4.4.

Y. Choi, W.K. Chung: PID Trajectory Tracking Control for Mechanical Systems, LNCIS 298, pp. 47–70, 2004.
Springer-Verlag Berlin Heidelberg 2004
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4.2 Square and Linear Performance Tunings

In this section, we are to derive simple tuning rules from the performance lim-
itation of an inverse optimal PID controller for trajectory tracking mechanical
systems. First of all, an inverse optimal PID controller has the following form:

τ =

(
K +

1

γ2
I

)(
ė + KP e + KI

∫
edt

)
, (4.1)

and its design conditions are as follows:

(C1) K, KP , KI > 0, constant diagonal matrices
(C2) K2

P > 2KI ,
(C3) L2-gain γ > 0.

From now on, we will omit terms ‘inverse optimal’ in an inverse optimal PID
controller. If a PID controller (4.1) is applied to trajectory tracking mechanical
system (3.5) as shown in Theorem 5, then the closed-loop has the following
form:

V̇ ≤ −1

2
xT

(
Q + PBKBT P

)
x + γ2|w|2. (4.2)

To find very simple performance tuning rules: ‘square’ and ‘linear’ laws, first
of all, the performance limitation is suggested using above equation (4.2) and
extended disturbance in following section.

4.2.1 Performance Limitation for State Vector

The extended disturbance of (3.2) can be expressed as a function of time and
state vector as following form:

w(x, t) = H(x, t)x + h(x, t) (4.3)

where

H(x, t) = [ CKI , MKI + CKP , MKP ]

h(x, t) = Mq̈d + Cq̇d + g + d.

Now, consider the Euclidian norm of extended disturbance of (4.3). Then
we get the insight such that the extended disturbance can be bounded by
the function of Euclidian norm of a state vector under the following two
assumptions:

(A1) : the configuration derivative q̇ is bounded
(A2) : the external disturbance d(t) is bounded.

The first assumption is not a hard condition to be satisfied if the applied
controller can stabilize the system. Also, we think that the second assump-
tion is a minimal information for the unknown external disturbance. By the
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bounds of q̇, the Coriolis and centrifugal matrix C(q, q̇) can be bounded,
e.g., |C(q, q̇)| ≤ c0|q̇| with a positive constant c0. Additionally, we know that
the gravitational torque g(q) is bounded if the system stays at the earth,
and the Inertia matrix M(q) is bounded by its own maximum eigenvalue m,
e.g., |M(q)| ≤ m. Also, the desired configurations (qd, q̇d, q̈d) are specified as
the bounded values. Therefore, we can derive the following relationship from
above assumptions:

|w|2 = xT (HT H)x + 2(hT H)x + (hT h)

≤ c1|x|2 + c2|x|+ c3 (4.4)

where c1, c2 and c3 are some positive constants. Under above assumptions,
we know that the Euclidian norm of an extended disturbance can be upper
bounded by the function of that of a state vector, conversely, the Euclidian
norm of a state vector can be lower bounded by the inverse function of that
of an extended disturbance:

|w| ≤ ρ−1
o (|x|) " ρo(|w|) ≤ |x|,

where ρo(|w|) = 0 for 0 ≤ |w| ≤ √c3 because when 0 ≤ |w| ≤ √c3, necessarily
x = 0. Also, the constant c3 of (4.4) can not be zero either in the case of a
trajectory tracking control or in the presence of the external disturbances
and the gravitational torques. Though the function ρo must be a continuous,
unbounded and increasing function, ρo is not a class K∞ function because it
is not strictly increasing as shown in Fig. 4.1.

|x|

|w|

Slope : 1/ c
1
1/2

c
3
1/2

0
(|w|)

Fig. 4.1. Function ρo(|w|)

On the other hand, if there exist no external disturbances (d(t) = 0) and
the gravity torques (g(q) = 0), then the GAS can be proved for the set-point
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regulation control (q̈d = 0, q̇d = 0) because c2 = 0, c3 = 0 and the function ρo

becomes a class K∞. For the first time, the GAS of the set-point regulation
PD/PID controller was proved for mechanical systems by [2, 60]. However,
either in the trajectory tracking or in the existence of external disturbance,
the static PID controller can not ensure the GAS without using a dynamic
model compensator. This fact brings a performance limitation of the PID
controller.

The control performance is determined by the gain values of a controller.
Hence, it is important to perceive the relation between the gain values and
the errors. This relationship can be found by examining the point that the
time derivative of Lyapunov function is equal to zero. The following Theorem
suggests a mathematical expression for the performance limitation measure.

Theorem 7. Let K = kI,KP = kP I and KI = kII ∈ 'n×n. Suppose that
λmin is the minimum eigenvalue of following matrix

QK = Q + PBKBT P , (4.5)

and that the performance limitation |x|P.L is defined as the Euclidian norm
of a state vector that satisfies V̇ = 0. If a PID controller in Theorem 5 is
applied to the Lagrangian system of (3.5) and λmin is chosen sufficiently large
and γ sufficiently small in order that λmin − 2γ2c1 > 0 is satisfied, then its
performance limitation is upper bounded by

|x|P.L ≤
(

γ2

λγ

) [
c2 +

√
c2
2 + 2c3

(
λγ

γ2

)]
(4.6)

where c1, c2, c3 are coefficients for the upper bound of extended disturbance
(4.4), λγ = λmin − 2γ2c1 and the minimum eigenvalue of QK is determined
by

λmin ≥ min
{
k, (k2

P − 2kI)k, k2
Ik

}
. (4.7)

This equation (4.6) can be regarded as the performance prediction equation
which can predict the performance of the closed-loop system as gain changes.

Proof. First, we examine the point that the time derivative of Lyapunov
function (3.26) stays at zero:

V̇ (x, t) ≤ −1

2
xT QKx + γ2|w|2

≤ −1

2
λγ |x|2 + c2γ

2|x|+ c3γ
2. (4.8)

where λγ = λmin − 2γ2c1 and the state vector can not be further reduced

at the point satisfying V̇ = 0. By definition of the performance limitation,
the inequality (4.8) brings the performance limitation of (4.6). Second, let us
consider the minimum eigenvalue λmin of the matrix QK :
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QK =

kk2
II 0 0
0 k(k2

P − 2kI)I 0
0 0 kI

 + k

 kII

kP I

I

 [kII, kP I, I]

= Q + kZZT

where Q is the diagonal positive definite matrix and ZZT is a symmetric
positive semi-definite matrix. Therefore, the following inequality is always
satisfied by Weyl’s Theorem in [22, 27]

λmin(Q) + λmin(kZZT ) ≤ λmin # λmin(QK). (4.9)

Since λmin(kZZT ) is zero, the minimum eigenvalue of QK is not smaller than
the minimum value among diagonal entries of Q. %

Remark 5. If we choose kP and kI satisfying k2
P −2kI > 1 and kI > kP > 1 in

Theorem 7, then the eigenvalues of QK (4.5) satisfy the following interlacing
property:

k < λ3 < (k2
P − 2kI)k < λ2 < k2

Ik < λ1, (4.10)

where λ1, λ2, λ3 are the block diagonal eigenvalues of QK with the descending
order.

Proof. Although the QK has 3n eigenvalues, it is sufficient to show only
3 eigenvalues because it shares each n same eigenvalues. Let us define the
reduced matrix for QK as following form:

DK =

kk2
I 0 0

0 k(k2
P − 2kI) 0

0 0 k

 + k

 kI

kP

1

 [kI , kP , 1]

= D + kzzT

where D is the diagonal matrix with descending order. To begin with, we
consider the eigenvalue computation

(D + kzzT )v = λv, v 9= 0 (4.11)

where D and DK do not have common eigenvalues and zT v 9= 0 because z

has no zero components as explained in [22, 42]. Since (D−λI) is nonsingular,
if we apply zT (D−λI)−1 to both sides of (4.11), then we obtain the following:

zT v(1 + kzT (D − λI)−1z) = 0.

Since zT v 9= 0, the following function should be zero:

f(λ) = 1 + kzT (D − λI)−1z

= 1 + k

(
k2

I

kk2
I − λ

+
k2

P

k(k2
P − 2kI)− λ

+
1

k − λ

)
= 0.



www.manaraa.com

52 4 Performance Limitation and Tuning

k 2( 2 )P Ik k k− 2
Ik k

1

λ

( )f λ

0

Fig. 4.2. Function f(λ)

If we obtain the differentiation of f(λ), then we can know that f ′(λ) > 0.
Therefore, the function f(λ) is monotone in between its poles as shown in Fig.
4.2. This allows us to conclude that f(λ) has precisely 3 roots(λ3 < λ2 < λ1),
one in each of the intervals

[k ∼ (k2
P − 2kI)k] < [(k2

P − 2kI)k ∼ k2
Ik] < [k2

Ik ∼ ∞].

Therefore, it follows that the block diagonal eigenvalues of QK satisfy the
interlacing property of (4.10). %
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Fig. 4.3. Relation b/w |x|P.L and the upper bound of V̇
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For the set-point regulation control, the value of Lyapunov function is
large at the start time and it is gradually reduced to zero because the con-
troller is designed so that the time derivative of Lyapunov function remains
negative definite. On the other hand, for the trajectory tracking control, we
start the simulation/experiment with zero error x = 0 after adjusting initial
conditions. The value of Lyapunov function is zero at the start time, however,
the error increases to some extent because V̇ (0, 0) may have any positive con-
stant smaller than c3γ

2 as shown in Fig. 4.3. This figure depicts the upper
bound of V̇ vs. |x| of the equation (4.8). Since the performance limitation
|x|P.L upper bounded by the inequality (4.6) is the convergent point as we
can see in Fig. 4.3, the Euclidian norm of a state vector tends to stay at this
point. This analysis can naturally illustrate the performance tuning.

4.2.2 Square and Linear Rules

The PID gain tuning has been an important subject, however, it has not been
much investigated till now. Recently, the noticeable tuning method was sug-
gested as the name of “square law” in [48]. They showed that the square law
is a good tuning method by their experiments for a industrial robot manipu-
lator. Theoretically, we can confirm once more that the square law is a good
tuning method by showing that the performance limitation of (4.6) can be
written approximately as following form:

|x|P.L ∝ γ2,

where the square law means that the error is approximately reduced to the
square times of the reduction ratio for γ values. Though the square law must
be a good performance tuning method, it is not always exact or applicable.
The exact performance tuning measure is the performance limitation of (4.6)
in Theorem 7, however, the coefficients c1, c2, c3 are unknowns. To develop an
available and more exact tuning method, we rewrite the performance limita-
tion (4.6) as follows:

|x|P.L ≤
(

γ√
λγ

)2
c2 +

√√√√c2
2 + 2c3

(√
λγ

γ

)2


≤
(

γ√
λγ

)2 [
2c2 +

√
2c3

(√
λγ

γ

)]

= 2c2

(
γ√
λγ

)2

+
√

2c3

(
γ√
λγ

)
(4.12)

where λγ = λmin − 2γ2c1. Since the γ value can be chosen sufficiently small,
we assume that λγ ≈ λmin. If the values of kP and kI satisfying k2

P − 2kI > 1
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and kI > kP > 1, then the value of λmin is lower bounded by k as shown
in Remark 5, i.e., λmin ≥ k. By letting λγ ≈ k and defining the tuning

variable as (γ/
√

k), the performance limitation of (4.12) can be expressed by
the function of tuning variable (γ/

√
k) as following form:

|x|P.L ∝ 2c2

(
γ√
k

)2

+
√

2c3

(
γ√
k

)
. (4.13)

For a large tuning variable, since the second order term governs the inequality
(4.13), the following square tuning law is approximately obtained from (4.13):

|x|P.L ∝ γ2, for a small
√

k. (4.14)

Also, if the tuning variable (γ/
√

k) is small, then we can perceive another
linear tuning law:

|x|P.L ∝ γ, for a large
√

k, (4.15)

because the first order term of (4.13) becomes dominant. Here, we propose
two tuning methods; one is the coarse tuning which brings the square relation
of (4.14) and the other is the fine tuning which brings the linear relation of
(4.15). Roughly speaking, the coarse tuning is achieved for a small k value and
the fine tuning for a large k. As a matter of fact, the criterion between small
k and large k is dependent on coefficients c1, c2 and c3, in other words, what
k value can be a criterion for a given system should be determined through
experiments/simulations.

4.2.3 Illustrative Example

To show the effectiveness of square and linear rules, we perform some simu-
lations for pendulum system as shown in Fig. 3.1. The desired trajectory and
plant parameters (m = 1kg, l = 1m, g = 9.806m/s2) are determined identi-
cally with the example in section 3.4.3. Here, if the PID controller (3.42) using
kP = 20 and kI = 100 is applied to pendulum system in Fig. 3.1, then the
simulation results are obtained as shown in Fig. 4.4 according to the changes
of γ when k = 5. The maximum values of Fig. 4.4.(a) are rearranged in Table
4.1. In figure and table, |x| and ‖x‖∞ mean Euclidean norm and L∞ norm
of state vector, respectively.

Whenever γ values are halved like 0.4 → 0.2 → 0.1 for k = 5 as shown
in Table 4.1, the maximum magnitude of state vector are reduced to an ap-
proximate quarter like 0.4606 → 0.1456 → 0.0312. In Fig. 4.4 and Table 4.1,
we can see that the control performances comply with the square tuning rule
(4.14) for a relatively small k = 5. The maximum deviation between the real
performance enhancement and expected one is 21% in Table 4.1. Also, the
configuration errors comply well with the square tuning rule as shown in Fig.
4.4.(b) and Table 4.2. The maximum deviation is 20% in Table 4.2.
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Fig. 4.4. Simulation results for pendulum system when k = 5

Table 4.1. The maximum magnitude of state vector for various γ when k = 5,
where the subscript u or l means the corresponding value of either upper or lower
data

γ ‖x‖∞ ‖x‖∞,u/‖x‖∞,l Expected, γ2
u/γ2

l

0.4 0.4606
0.2 0.1456

3.163 4.0

0.1 0.0312
4.667 4.0

Table 4.2. The maximum configuration error for various γ when k = 5

γ ‖e‖∞ ‖e‖∞,u/‖e‖∞,l Expected, γ2
u/γ2

l

0.4 0.0387
0.2 0.0121

3.198 4.0

0.1 0.0031
3.903 4.0

For a relatively large k = 30, the simulation brings the results of Fig. 4.5
and Table 4.3 and 4.4. Whenever γ values are halved like 0.4 → 0.2 → 0.1
for k = 30 as shown in Table 4.3, the maximum magnitude of state vector
are reduced to an approximate half like 0.1153 → 0.0685 → 0.0245. In Fig.
4.5.(a) and Table 4.3, we can see that the control performances comply with
the linear tuning rule (4.15) for a relatively large k = 30. The maximum
deviation between the real performance enhancement and expected one is
40% in Table 4.3. Also, the configuration errors comply well with the linear
tuning rule as shown in Fig. 4.5.(b) and Table 4.4. The maximum deviation
is 22% in Table 4.4.

Though the square and linear tuning rules are very simple in applying
them to mechanical systems, the deviation between the real performance en-
hancement and expected one by tuning rules is a little large. Also, the cri-
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Fig. 4.5. Simulation results for pendulum system when k = 30

Table 4.3. The maximum magnitude of state vector for various γ when k = 30

γ ‖x‖∞ ‖x‖∞,u/‖x‖∞,l Expected, γu/γl

0.4 0.1153
0.2 0.0685

1.683 2.0

0.1 0.0245
2.796 2.0

Table 4.4. The maximum configuration error for various γ when k = 30

γ ‖e‖∞ ‖e‖∞,u/‖e‖∞,l Expected, γu/γl

0.4 0.0097
0.2 0.0061

1.590 2.0

0.1 0.0025
2.440 2.0

terion between small k and large k is unclear in applying either square or
linear tuning rule because it depends on uncertain coefficients c1, c2 and c3.
In following section, more exact performance tuning rule is developed for a
composite error, not for a state vector.

4.3 Compound Performance Tuning

In this section, we are to develop more exact tuning rule than the linear
and square tuning rules suggested in previous sections, from the performance
limitation imposed by applying a PID controller to Lagrangian systems. If the
PID controller (4.1) is expressed by using a composite error vector, then the
PID controller has the following compact form:

τ =

(
K +

1

γ2
I

)
s, (4.16)
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where three design conditions for (4.1) should be satisfied. To find a useful
tuning rule for PID control systems, first of all, we are to obtain the perfor-
mance limitation for a composite error in following section.

4.3.1 Performance Limitation for Composite Error

If above PID controller (4.16) is applied to the trajectory tracking system
(3.3), then the composite error vector of closed-loop system is upper bounded
by the extended disturbance as suggested in following Theorem. As a matter
of fact, the bound of composite error in following Theorem means the per-
formance limitation of PID controller for n-dimensional trajectory tracking
system.

Theorem 8. Let s = ė+KP e+KI

∫
edt ∈ 'n. If the PID controller (4.16)

is applied to the trajectory tracking system (3.3), then the composite error is
upper bounded as following form:

|s(t)| ≤ |s(0)|e−
kγ2+0.5

λγ2 t
+

γ2√
2kγ2 + 1

‖w‖∞ , (4.17)

where s(0) is the initial composite error vector, λ is a maximum eigenvalue
of Inertia matrix M , and k is a minimum diagonal element of K.

Proof. If the PID controller of (4.16) is applied to (3.3), then the closed-
loop control system becomes as follows:

Mṡ + Cs = w −
(

K +
1

γ2
I

)
s. (4.18)

Since above closed-loop system is also Lagrangian system, the characteristics
of Lagrangian system can be used for above system. An useful characteristics
is that the equality (Ṁ = CT +C) is always satisfied. Now, let us differentiate
the positive real-valued function

(
1
2sT Ms

)
along (4.18) as follows:

d

dt

(
1

2
sT Ms

)
=

1

2
ṡT Ms +

1

2
sT Ṁs +

1

2
sT Mṡ,

= −sT

(
K +

1

γ2
I

)
s + sT w, by using Ṁ = C + CT

= −sT

(
K +

1

2γ2
I

)
s− γ2

2

∣∣∣∣ 1

γ2
s−w

∣∣∣∣2 +
γ2

2
|w|2,

≤ −sT

(
K +

1

2γ2
I

)
s +

γ2

2
|w|2.

Using the maximum eigenvalue of Inertia matrix M and the minimum diag-
onal element of gain matrix K, above inequality can be simplified to:
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d

dt

(
λ

2
|s|2

)
≤ −

(
k +

1

2γ2

)
|s|2 +

γ2

2
|w|2.

If we multiply above inequality by e
2kγ2+1

λγ2 t
, then it becomes

d

dt

(
λ|s|2e

2kγ2+1

λγ2 t
)
≤ γ2|w|2e

2kγ2+1

λγ2 t
. (4.19)

Integrating (4.19) over [0,t], we arrive at the following form:

|s(t)|2 ≤ |s(0)|2e−
2kγ2+1

λγ2 t
+

γ2

λ

∫ t

0

e
− 2kγ2+1

λγ2 (t−τ)|w(τ)|2dτ

≤ |s(0)|2e−
2kγ2+1

λγ2 t
+

γ2

λ
sup

τ∈[0,t]

{|w(τ)|2} ∫ t

0

e
− 2kγ2+1

λγ2 (t−τ)
dτ

= |s(0)|2e−
2kγ2+1

λγ2 t
+

γ2

λ
‖w‖2∞

λγ2

2kγ2 + 1
(e
− 2kγ2+1

λγ2 t − 1).

By applying the property of
√

a2 + b2 ≤ |a| + |b| to right hand side of above
inequality, an explicit upper bound of composite error vector is obtained as
follow:

|s(t)| ≤ |s(0)|e−
kγ2+0.5

λγ2 t
+

γ2√
2kγ2 + 1

‖w‖∞
√

(1− e
− 2kγ2+1

λγ2 t
)

≤ |s(0)|e−
kγ2+0.5

λγ2 t
+

γ2√
2kγ2 + 1

‖w‖∞.

%

The first term of right hand side of (4.17) is a class KL function because
it is an increasing function for |s(0)| and decreasing one for time t. Also, the
second term is a class K function since it is an increasing one for ‖w‖∞. Hence,
the extended disturbance input-to-state stability (ISS) can be also proved from
Theorem 8 because the upper bound (4.17) follows the ISS characteristics of
(3.7). Though the exponential term of (4.17) goes to zero as t → ∞, the
composite error can not be zero because the extended disturbance of (3.2)
includes the inverse dynamics according to desired configurations (qd, q̇d, q̈d)
and gravity force g(q), moreover, w 9= 0 as shown in following equation even
when e = 0, ė = 0,

∫
edt = 0:

w(t, ė, e,

∫
edt) = Mq̈d + Cq̇d + g + d

+MKP ė + (MKI + CKP ) e + CKI

∫
edt. (4.20)

Also, the size of composite error is affected by the size of extended disturbance
as shown in equation (4.17). As a matter of fact, the boundedness of (4.17)
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expresses the performance limitation imposed by using a PID trajectory track-
ing controller. Although the PID trajectory tracking controller guarantees the
extended disturbance input-to-state stability(ISS) for Lagrangian systems, it
does not bring the globally asymptotic stability(GAS). This was proved for
the first time in [14]. Also, the upper bound of composite error naturally
suggests a new performance tuning rule.

4.3.2 Compound Rule

The performance tuning method can be perceived from the relation between
gain and error. In the trajectory tracking control, since the initial composite
error s(0) of (4.17) can be set to zero vector by the initialization of control
system, the composite error can be bounded only by L∞ norm of the extended
disturbance as follows:

|s(t)| ≤ γ2√
2kγ2 + 1

‖w‖∞. (4.21)

As a matter of fact, the boundedness of (4.21) includes the performance tun-
ing law representing the relation between the composite error (s) and gains
(k, γ) of PID controller. If the PID controller stabilizes the trajectory tracking
system, then error vectors will be smaller than desired configurations in the
extended disturbance (4.20). Then, the extended disturbance shows almost
same magnitude for same trajectory because it is largely affected by inverse
dynamics according to desired configurations. Therefore, if the utilized PID
controller can stabilize the system, then we can find the following proportional
relation from (4.21):

|s| ∝ γ2√
2kγ2 + 1

. (4.22)

Above is the ‘compound tuning rule’ unifying both square and linear tun-
ing rules suggested in previous sections. Also, this is a passive performance
tuning method in that above tuning rule can be applied after we performed
experiment once at least.

Remark 6. In previous sections, the square and linear tuning rules were pro-
posed and proved through experiments. For a composite error, these square
and linear tuning rules can be also found by approximating (4.22) according
to the size of gain k as follows:

Square Tuning : |s| ∝ γ2, for a small k,

Linear Tuning : |s| ∝ γ, for a large k.

Although above rules are very useful in tuning the control performance, they
can be utilized only by repetitive experiments for same trajectory because the
tuning rules consist of proportional relations. Hence, these also correspond to
passive performance tuning methods.
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4.3.3 Illustrative Example

To show the validity of compound tuning rule, we implemented same sim-
ulations with the desired trajectory of Fig. 3.2 for a pendulum system as
shown in Fig. 3.1. The simulation results were obtained as shown in Fig. 4.6
according to the change of γ when k = 10, kP = 20 and kI = 100. In that
figure, we can see that the control performances comply with the compound
tuning rule (4.22). For instance, the maximum values of composite errors in
Fig. 4.6.(a) were rearranged in Table 4.5, here, the proportional constant de-
termined by gains of (4.22) are calculated as 0.0781 for γ = 0.4 and 0.0298
for γ = 0.2, hence, the performance will be enhanced by 2.621 times since
(0.0781 → 0.0298), in other words, the composite error will be reduced by
1/2.621 times. As we can see in Table. 4.5, the real composite errors comply
well with the compound tuning rule. The maximum deviation between the
real performance enhancement and expected one is 5.1% in Table 4.5. Since
the configuration error has the proportional relation with the composite er-
ror, the configuration errors comply also well with the compound tuning rule
as shown in Fig. 4.6.(b) and Table 4.6. The maximum deviation is 5.9% in
Table 4.6 . The compound tuning rule brings smaller deviation than square
and linear tuning rules in previous sections.
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Fig. 4.6. Simulation results for pendulum system when k = 10

Another advantage of compound tuning rule is that it unifies both the
square tuning rule and linear one explained in Remark 6 as one tuning rule.
Though it must be a more exact tuning rule than the square and linear tuning
rules, however, it loses the advantage of simplicity of square and linear rules
as we can see in the compound rule (4.22).

Remark 7. Till now, we suggested three performance tuning rules: square rule,
linear one and compound one. Since these can be applied after we perform the
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Table 4.5. The maximum composite error for various γ when k = 10

γ ‖s‖∞ ‖s‖∞,u/‖s‖∞,l Expected,

(
γ2√

2kγ2+1

)
u

/

(
γ2√

2kγ2+1

)
l

0.4 0.7720
0.2 0.3094

2.495 2.621

0.1 0.0958
3.230 3.275

Table 4.6. The maximum configuration error for various γ when k = 10

γ ‖e‖∞ ‖e‖∞,u/‖e‖∞,l Expected,

(
γ2√

2kγ2+1

)
u

/

(
γ2√

2kγ2+1

)
l

0.4 0.0250
0.2 0.0101

2.475 2.621

0.1 0.0029
3.483 3.275

experiment at least once, however, these are all passive performance tuning
methods. To overcome this disadvantage of passive tuning rule, we will devise
an automatic performance tuning method in next chapter.

4.4 Experimental Results

To show the validity of optimality of PID control experimentally, we utilize
the planar three link robot manipulator (POSTECH DDARM II in Fig. 4.7).
This mechanical robot system interfaces with the 400MHz computer CPU via
the interface boards such as the encoder counting S626 PCI board (S626 man-
ufactured by Sensoray Co.) and D/A converting PCL726 ISA board (PCL726
manufactured by Advantech Co.). The RTLinux V2.2 is utilized as the real
time operating system of a computer. We can raise the control frequency up
to 5kHz thanks to RTLinux. And the desired trajectory consists of the fifth
order polynomial functions of time so that the initial/final velocity and accel-
eration can be set to zero and the execution time is 5 seconds. The utilized
inverse optimal PID controller has the following form:

τ =

(
k +

1

γ2

)(
ė + kP e + kI

∫
edt

)
.

As proved in Theorem 4 and Remark 3, the controller is optimal for H∞
performance index of (3.17) using

Q =

k2
IkI 0 0
0 (k2

P − 2kI)kI 0
0 0 kI


R =

(
k +

1

γ2

)−1

I.
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First of all, the Euclidian norm and the L2 norm performances for the state
vector x are evaluated, respectively. The Euclidian norm performance means
the instant performance at time t and L2 norm performance represents the
average performance for the total execution time.

Additionally, we inclined the planar robot in Fig. 4.7 about 10◦ to give the
gravity effect. This mechanical manipulator is composed of three direct drive
motors: the base motor has the 200[Nm] capability, the second one 55[Nm] and
the third one 18[Nm]. To make use of the unified control scheme, we scaled
up the applied torque according to the capacity of motor, e.g., the scaling
factor of base motor is 8.0, that of second one 3.0, that of third one 1.0. The
desired trajectories are the fifth order polynomial functions of time so that
the initial/final velocity and acceleration can be set to zeros. As shown in
Fig. 4.7, they are composed of 3 forward line segments and 3 backward ones,
also, the execution time per each line segment is 2 seconds and total one is 12
seconds.

Fig. 4.7. Desired Trajectory of Robot Manipulator System

4.4.1 Experiment: Square and Linear Rules

At first, we determined initial gains kP =  20 and kI =  100 that satisfy
conditions (C1) and (C2) of (4.1. After fixing k  = 0.05 and γ  = 1.0, we
obtained the configuration error (e) profile of Fig. 4.8.(a) and the applied
torque (τ )  profile of Fig. 4.8.(b). Also, we obtained Fig. 4.8.(c),(d) for γ = 0.5
and Fig. 4.8.(e),(f) for γ = 0.25. In Fig. 4.8, whenever the γ values are halved
like 1.0 → 0.5 → 0.25, the maximum range of y-axis expressing configuration
errors are approximately reduced to a quarter like 0.4 → 0.1 → 0.02. Hence, it
complied with the “square(coarse) tuning rule” of (4.14). Second, we increased
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the k value gradually and, at k = 3, Fig. 4.9 was obtained for the same
condition. Whenever the γ values are halved for k = 3, the maximum range
of y-axis expressing configuration errors are approximately reduced to a half
like 0.1 → 0.05 → 0.015. Hence, it corresponded to the “linear(fine) tuning
rule”. The torques were not changed much as we can see in Fig. 4.8 and 4.9.
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Fig. 4.8. The control performance for k = 0.05, kP = 20 and kI = 100 according
to γ change : [square(coarse) tuning rule]

In above experiments, we showed the validity of tuning laws for fixed
kP and kI . As a matter of fact, the change of gains kP and kI also affects
on the performance of control system. To begin with, we should remember
two proportional relations of (3.34) and (3.35). If the gain kP is increased
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Fig. 4.9. The control performance for k = 3, kP = 20 and kI = 100 according to γ
change : [linear(fine) tuning rule]

to one and half times (kP : 20 → 30), then the gain kI should be increased
by the same increment ratio (kI : 100 → 150) according to a proportional
relation (3.35). Although we had changed gains to kP = 30 and kI = 150, the
experimental results for k = 0.05 complied with the square tuning rule, e.g.,
0.25 → 0.06 → 0.015 as shown in Fig. 4.10 and those of k = 3 complied with
the linear tuning rule, e.g., 0.06 → 0.03 → 0.01 as shown in Fig. 4.11.

We showed through experiments that the maximum configuration errors
complied with the square/linear tuning rules. However, it does not imply
that the average control performances comply with the tuning rules. Now, we
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Fig. 4.10. The control performance for k = 0.05, kP = 30 and kI = 150 according
to γ change : [square(coarse) tuning rule]

consider the L2 norm performance for a state vector. In Table 4.7, the L2

norm performances were evaluated by

‖x‖ =

√∫ 12

0

[
ėT ė + eT e +

∫
eT

∫
e

]
dt.

The average performance for the k = 0.05 complied with the square tun-
ing rule and for the k = 3 the linear one as shown in Table 4.7. For the
kP = 20, kI = 100, the maximum deviation for the square/linear tuning rules
between the experimental and the expected value was 22.5% in the upper
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Fig. 4.11. The control performance for k = 3, kP = 30 and kI = 150 according to
γ change : [linear(fine) tuning rule]

part of Table 4.7. Also, for kP = 30, kI = 150, the maximum deviation be-
came 35.6% in the lower part of Table 4.7.

4.4.2 Experiment: Performance Estimation by Optimality

As shown in previous chapter, the performance change by the increment of
kP and kI can be estimated by (3.40). For example, if we increase gains
kP and kI by two times, then the magnitude of KPI  in (3.40) is increased
approximately by two times. Therefore, the state vector x will be reduced to a
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Table 4.7. The L2-norm performances for various γ and k, where Expected are
calculated by either γ2

u/γ2
l for k = 0.05 or γu/γl for k = 3, and the subscript u or l

means the corresponding value of either upper or lower data

kP /kI k γ ‖x‖ ‖x‖u/‖x‖l Expected

1 2.147
0.5 0.552

3.890
0.05

0.25 0.178
3.101

4.0

1 0.562
0.5 0.331

1.698
20/100

3

0.25 0.165
2.006

2.0

1 1.545
0.5 0.407

3.796
0.05

0.25 0.158
2.576

4.0

1 0.409
0.5 0.252

1.623
30/150

3

0.25 0.161
1.565

2.0

half, in other words, the control performance becomes better by two times. In
our experiments, since the increment ratio was one and half times, we could
see the performance enhancement by one and half times. Compare the Fig.
4.8 and 4.10, then the performances for the error were enhanced by one and
half times, e.g., 0.4 → 0.25 in (a), 0.1 → 0.06 in (c) and 0.02 → 0.015 in (e).
Also, we could see the same performance enhancement in the Fig. 4.9 and
4.11. From these experimental results, we could confirm experimentally that
a PID controller is optimal for the H∞ performance index of (3.17). Finally,
since the increment ratio was one and half times, the L2 norm performances
were also enhanced approximately by one and half times as shown in Table
4.8. The maximum deviation between the experimental and expected data
was 31.7%. Actually, when k = 3 and γ = 0.25 in Table 4.8, the performance
enhancement is little because the third motor of robotic manipulator reaches
the hardware limitation as we can see in Fig. 4.9.(e),(f) and 4.11.(e),(f).

4.4.3 Experiment: Compound Rule

Though the square and linear tuning rules must be good ones, they can not be
applied to the intermediate value between k = 0.05 and k = 3. For instance,
the experimental results in Fig. 4.12 and 4.13 obtained by using an interme-
diate k = 1 do not comply with either square or linear tuning rule, but the
compound tuning rule (4.22).

As a  matter of fact, the compound tuning rule can be also applied to
experimental results obtained by using k = 0.05 and k = 3 in previous section.
To show this, if we arrange the maximum value among configuration errors of
1st base motor e[1] from experimental results of Fig. 4.8 – 4.13, then we can
get Table 4.9. In that table, we can see that the compound tuning rule (4.22)
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Table 4.8. L2-norm performance changes by increments of gains kP and kI

k γ kP /kI ‖x‖ ‖x‖u/‖x‖l Expected

20/100 2.147
1

30/150 1.545
1.390

20/100 0.522
0.5

30/150 0.407
1.283

20/100 0.178

0.05

0.25
30/150 0.158

1.127

20/100 0.562
1

30/150 0.409
1.374

20/100 0.331
0.5

30/150 0.252
1.313

20/100 0.165

3

0.25
30/150 0.161

1.025

1.5

performs well for entire experimental results, though it is somewhat difficult to
calculate the expected value for performance enhancement in Table 4.9. The
maximum deviation is 28.6%. Also, maximum values among configuration
errors of 2nd motor e[2] and 3rd motor e[3] show similar tendency.

Table 4.9. The maximum configuration error e[1] for various γ and k, where Ex-

pected is calculated by

(
γ2√

2kγ2+1

)
u

/

(
γ2√

2kγ2+1

)
l

kP /kI k γ ‖e[1]‖∞ ‖e[1]‖∞,u/‖e[1]‖∞,l Expected

1 0.387
0.5 0.095

4.1 3.9
0.05

0.25 0.019
5.0 4.0

1 0.204
0.5 0.076

2.7 2.8
1

0.25 0.017
4.5 3.5

1 0.097
0.5 0.051

1.9 2.4

20/100

3

0.25 0.016
3.2 3.0

1 0.260
0.5 0.062

4.2 3.9
0.05

0.25 0.014
4.4 4.0

1 0.131
0.5 0.049

2.7 2.8
1

0.25 0.013
3.8 3.5

1 0.061
0.5 0.034

1.8 2.4

30/150

3

0.25 0.012
2.8 3.0
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Fig. 4.12. The control performance for k = 1, kP = 20 and kI = 100 according to
γ change : [compound tuning rule]

4.5 Summary

A performance analysis of the inverse optimal PID controller was provided
in view of the performance limitation and tuning. The simple square/linear
(coarse/fine) performance tuning rules were derived from the performance
limitation for state vector. Also, the compound performance tuning rule was
suggested as more exact tuning rule. Also, experimental results demonstrated
the validity of three performance tuning laws.
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Fig. 4.13. The control performance for k = 1, kP = 30 and kI = 150 according to
γ change : [compound tuning rule]
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Automatic Performance Tuning

5.1 Introduction

The PID controller for mechanical systems has been widely used with various
usages. In previous chapter 4 and [11, 13, 14], the noticeable ‘square tuning’
and ‘linear tuning’ rules have been proposed using an inverse optimal PID
controller suggested in chapter 3. Also, the ‘compound tuning’ rule unifying
both square tuning and linear rules has been proposed using the performance
limitation expressed by composite error. However, these tuning methods are
all passive in that the control performance can not be estimated or adjusted
by tuning rules themselves, because they are composed of all proportional
relations.

Many automatic performance tuning methods of PID controller were pro-
posed in [3, 26, 66], however, they are all about the chemical process control
systems. Since most process systems show very slow responses with time-delay
effect, the auto-tuning algorithms developed for process control systems can
not be directly applied to mechanical systems. Though the performance tun-
ing by gain changes has brought one’s interest with wide acceptance, there
still exist no generally applicable auto-tuning laws of PID controller for me-
chanical systems. In this chapter, an automatic performance tuning method
of a PID controller1 will be proposed by making use of the direct adaptive
control scheme, based on the extended disturbance input-to-state stability in
chapter 3 and an analysis result of performance limitation in chapter 4.

Recently, the direct adaptive control scheme for nonlinear systems was de-
veloped in [9, 24, 25, 53]. Especially in [24], Haddad and Hayakawa suggested
the direct adaptive control method with L2-gain disturbance attenuation for
nonlinear systems. The direct adaptive control is different from the indirect
adaptive control in that the control parameters are estimated directly without
intermediate calculations involving plant parameter estimates. Strictly speak-

1 In this chapter, the PID controller stands for an inverse optimal PID trajectory
tracking controller suggested in chapter 3.

Y. Choi, W.K. Chung: PID Trajectory Tracking Control for Mechanical Systems, LNCIS 298, pp. 71–85, 2004.
Springer-Verlag Berlin Heidelberg 2004
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ing, the conventional adaptive motion (trajectory tracking) control methods
given in [16, 23, 30, 45, 55, 56] can be classified as the indirect adaptive control
for mechanical system, especially a robotic manipulator, because the param-
eters of mechanical system are estimated to construct a dynamical model
compensator. As far as we know, the direct adaptive control for nonlinear
dynamical system similar to Lagrangian system was investigated for the first
time in [9]. In a viewpoint of direct adaptive control, an auto-tuning law of
PID controller will be proposed in this chapter.

This chapter is organized as follows: a quasi-equilibrium region is newly
defined in section 5.2, an automatic performance tuning law of PID controller
will be derived from the direct adaptive control scheme for trajectory track-
ing system in section 5.3, the performance enhancement obtained by using
the model adaptation is optionally suggested in section 5.4 and experimental
results to show the effectiveness of auto-tuning law are given in section 5.5.

5.2 Quasi-equilibrium Region

The state space representation for mechanical system, especially Lagrangian
system, was given in previous section 3.2. For 3n-dimensional state space
description (3.5), the extended disturbance defined as (3.2) conceals a number
of characteristics of trajectory tracking mechanical system. As a matter of fact,
the extended disturbance w can be divided into the linear parameterization
part and external disturbances as following form:

w(x, t) = Y (x, t)θ + d(t) (5.1)

where the regressor matrix 

,

Y (x, t) can be found by separating a real param-
eter vector θ from

Y (x, t)θ = M(q)(q̈d + KP ė + KIe) + C(q, q̇)(q̇d + KP e + KI

∫
e) + g(q),

and the real parameters consist of constant masses and moments of Inertia
of each link, etc. Using the extended disturbance of (5.1), the state-space
representation of (3.5) can be modified to

ẋ = A(x, t)x + B(x, t)Y (x, t)θ + B(x, t)d + B(x, t)u, (5.2)

where θ is not an input vector, but a positive constant one obtained from
Lagrangian system itself. Also, the regressor Y (x, t) is not a zero matrix at
x = 0 except the case of set-point regulation control and gravity free motion.
In other words, if g(q) 9= 0 or q̈d 9= 0, q̇d 9= 0, then Y (x, t) 9= 0 at x = 0.
Hence, x = 0 can not be an equilibrium point of (5.2) even when d(t) = 0,
because one term B(0, t)Y (0, t)θ has the time-varying characteristics accord-
ing to desired trajectories. Actually, since the equilibrium point can not be
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found for system model (5.2), the concept of quasi-equilibrium region will be
introduced in following section.

To begin with, we assume that there exist no external disturbances for
system model (5.2), namely, d  = 0. If the PID controller (4.1) using 3n-
dimensional state vector as following form:

u = − (
K + γ−2I

) 
[KI ,  KP , I] x

is applied to (5.2), then the closed-loop control system is obtained as follows:

ẋ = Ac(x, t)x + B(x, t)Y (x, t)θ (5.3)

where

Ac = A−B
(
K + γ−2I

)
[KI ,KP , I] .

Since above closed-loop system has no equilibrium points as explained
before, we will define the quasi-equilibrium region and find it for above closed-
loop system in following Theorem.

Theorem 9. If the quasi-equilibrium region is defined as the interior region
of ball with the largest radius among state vectors satisfying ẋ = 0, then it is
obtained as following form:

|x| ≤ ‖xe‖∞ = sup
0≤t≤tf

|xe(t)|,

where xe(t) means the state vector satisfying ẋ = 0 in (5.3) and its Euclidian
norm is as follows:

|xe(t)| =
∣∣∣K−1

I

[
K + γ−2I

]−1
Y e(t)θ

∣∣∣ , (5.4)

and Y e(t)θ = M(qd)q̈d + C(qd, q̇d)q̇d + g(qd).

Proof. First, since ẋ = 0 means ẋ1 = x2 = e = 0 and ẋ2 = x3 = ė = 0,
we can easily know that

xe =

 xe1

xe2 = 0
xe3 = 0

 → |xe| = |xe1|

and q = qd, q̇ = q̇d from e = ė = 0. Second, to determine xe1, we should
solve the following equation:

0 = Ac(xe, t)xe + B(xe, t)Y (xe, t)θ. (5.5)

Here, Ac has the following form:
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Ac(xe, t) =

 0 I 0
0 0 I

Ac31 Ac32 Ac33


Ac31 = −M−1(qd)

[
C(qd, q̇d) + K + γ−2I

]
KI

Ac32 = −M−1(qd)
[
C(qd, q̇d) + K + γ−2I

]
KP −KI

Ac33 = −M−1(qd)
[
C(qd, q̇d) + K + γ−2I

]−KP .

Also, B(xe, t) and Y (xe, t)θ have the following forms:

B(xe, t) =
[
0,0, M−1(qd)

]T
,

Y (xe, t)θ = M(qd)q̈d + C(qd, q̇d)(q̇d + KI

∫
e) + g(qd)

= Y e(t)θ + C(qd, q̇d)KIxe1,

where Y e(t)θ is the inverse dynamics according to desired configurations
(qd, q̇d, q̈d). Hence, above equation (5.5) can be simplified to the following
form:

0 = −M−1(qd)
[
C(qd, q̇d) + K + γ−2I

]
KIxe1

+M−1(qd) [Y e(t)θ + C(qd, q̇d)KIxe1] ,

hence, xe1 is determined as follows:

xe1(t) = K−1
I

[
K + γ−2I

]−1
Y e(t)θ.

Finally, the quasi-equilibrium region is obtained by its definition as follows:

|x| ≤ ‖xe‖∞ = sup
0≤t≤tf

|xe(t)|,

where |xe(t)| =
∣∣∣K−1

I

[
K + γ−2I

]−1
Y e(t)θ

∣∣∣. %

The size of quasi-equilibrium region is inversely proportional to the inte-
gral gain KI as we can see in an equation (5.4). Also, large K and small
γ make the quasi-equilibrium region small. If we are to approach the quasi-
equilibrium region to the point xe = 0 using PID controller, irrespective of
the constant parameter vector θ and desired configurations (qd, q̇d, q̈d), then
one of three conditions should be satisfied: the one is that KI gain matrix
goes to infinity, another is that L2-gain γ to zero and the other is that the
gain K to infinity. This explains indirectly the reason why the PID controller
for trajectory tracking model of Lagrangian system can not bring the global
asymptotic stability(GAS). In fact, the quasi-equilibrium region of Theorem
9 has very close relation with performance limitation of PID controller. Till
now, the quasi-equilibrium region was obtained using 3n-dimensional state
vector in Theorem 9. Another expression for quasi-equilibrium region will be
suggested using n-dimensional composite error in following Remark.
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Remark 8. Let s = ė + KP e + KI

∫
edt. If we multiply [KI , KP , I] by xe in

Theorem 9:

se(t)
.
= [KI ,KP , I]xe(t)

=
[
K + γ−2I

]−1
Y e(t)θ, (5.6)

then the quasi-equilibrium region expressed by composite error vector is ob-
tained as follows:

|s| ≤ ‖se‖∞ = sup
0≤t≤tf

|se(t)|.

%3'2+#$03+,+(1+3-

&)*+/.
es

∞

( )e fs t

(0)es ( )es t

1s

2s

Fig. 5.1. Quasi-equilibrium region

In above Remark, the quasi-equilibrium region was defined using the com-
posite error as shown in Fig. 5.1. Its size is dependent upon the gain K

matrix, L2-gain γ and the inverse dynamics Y e(t)θ according to desired con-
figurations. In a practical respect, the quasi-equilibrium region can be used
as a criterion for target performance chosen by user. Also, it indirectly proves
the existence of gains which can achieve the target performance. In follow-
ing section, we will propose an automatic performance tuning method of PID
controller assisting to accomplish the target performance.

5.3 Automatic Performance Tuning

In this section, the automatic performance tuning method of PID controller
for Lagrangian systems will be proposed using the concept of direct adaptive
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control. Since the PID controller shows the performance limitation for trajec-
tory tracking model of Lagrangian system as shown in previous section, the
automatic performance tuning method is devised so that it can accomplish
the target performance of PID control system. The target performance im-
plies that the composite error should stay within ball boundary (Ω) chosen
by user, in other words, |s(t)| ≤ Ω for all t.

5.3.1 Auto-tuning Law

Since the quasi-equilibrium region is determined by the size of gains of PID
controller and the inverse dynamics Y e(t)θ depending on desired configu-
rations (qd, q̇d, q̈d), we should know the regressor matrix Y e(t) and plant
parameter vector θ to calculate the quasi-equilibrium region. Since it is dif-
ficult to exactly identify the parameters of Lagrangian systems, conversely,
we will use the quasi-equilibrium region as a criterion of target performance.
For example, if the target performance is determined, then the size of quasi-
equilibrium region should be adjusted so that it can achieve the target perfor-
mance. Therefore, the auto-tuning law for gains of PID controller is required
to adjust it. In this respect, we choose the gain matrix K in (5.6) as an
auto-tuning parameter. Finally, the auto-tuning law is derived from the direct
adaptive control scheme, based on ISS characteristics of trajectory tracking
system, in following Theorem.

Theorem 10. Let s = ė + KP e + KI

∫
edt. Assume that there exists the

smallest constant diagonal gain matrix KΩ > 0 accomplishing the target per-
formance (Ω) as follows:

sup
0≤t≤tf

|s(t)| ≤ Ω.

For KΩ > K̂(t), if the auto-tuning PID controller:

τ =
(
K̂(t) + γ−2I

)
s, (5.7)

using the auto-tuning law as following form:

dK̂i

dt
= Γis

2
i (t), for i = 1, · · · , n (5.8)

is applied to the trajectory tracking system (3.3), then the closed-loop control
system is extended disturbance input-to-state stable(ISS), where si is i-th el-

ement of composite error vector s, K̂i and Γi are i-th diagonal elements of

the diagonal time-varying gain matrix K̂(t) > 0 and the update gain matrix
Γ > 0, respectively.
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Proof. First, we take Lyapunov function as following form:

V (s, K̂, t) =
1

2
sT Ms +

1

2
tr

[(
K̂(t)−KΩ

)
Γ−1

(
K̂(t)−KΩ

)]
, (5.9)

where tr[·] means the trace of given matrix. If the auto tuning PID controller
(5.7) is applied to the trajectory tracking system model (3.3), then we can
get the time derivative of Lyapunov function along the solution trajectory of
closed-loop system as follows:

V̇ = −sT

(
K̂(t) +

1

2γ2
I

)
s− γ2

2

∣∣∣∣ 1

γ2
s−w

∣∣∣∣2 +
γ2

2
|w|2

+tr
[(

K̂(t)−KΩ

)
Γ−1 ˙̂

K(t)
]

= −sT

(
KΩ +

1

2γ2
I

)
s− γ2

2

∣∣∣∣ 1

γ2
s−w

∣∣∣∣2 +
γ2

2
|w|2

−sT
(
K̂(t)−KΩ

)
s + tr

[(
K̂(t)−KΩ

)
Γ−1 ˙̂

K(t)
]
.

Here, if the following matrix trace property is applied to above equation:

sT
(
K̂(t)−KΩ

)
s = tr

[(
K̂(t)−KΩ

)
ssT

]
,

then above time derivative of Lyapunov function is rearranged as follows:

V̇ = −sT

(
KΩ +

1

2γ2
I

)
s− γ2

2

∣∣∣∣ 1

γ2
s−w

∣∣∣∣2 +
γ2

2
|w|2

+tr
[(

K̂(t)−KΩ

)(
Γ−1 ˙̂

K(t)− ssT
)]

. (5.10)

Also, if the diagonal elements of
(
Γ−1 ˙̂

K(t)− ssT
)

are zeros, then the trace

term of (5.10) becomes zero because
(
K̂(t)−KΩ

)
is a diagonal matrix. In

other words, the auto-tuning law (5.8) is derived from the following relation:

if
dK̂i

dt
= Γis

2
i (t), for i = 1, · · · , n

then tr
[(

K̂(t)−KΩ

) (
Γ−1 ˙̂

K(t)− ssT
)]

= 0.

Therefore, if the auto-tuning PID controller (5.7) is applied to trajectory
tracking system, then we can get the following relation from (5.10):

V̇ ≤ −sT

(
KΩ +

1

2γ2
I

)
s +

γ2

2
|w|2. (5.11)

Also, since the right hand sides of (5.11) are unbounded functions for s and w,
respectively, above inequality follows the ISS characteristics of (3.8). Hence,
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the trajectory tracking system with an auto-tuning PID controller is extended
disturbance input-to-state stable(ISS). %

Actually, if the PID controller can not achieve the target performance,

namely, KΩ > K̂, then the auto-tuning law suggested in Theorem 10 will

help to achieve the target performance. On the contrary, for K̂ ≥ KΩ , the
target performance can be accomplished without using an auto-tuning law, in

other words,
˙̂

K = 0 for K̂ ≥ KΩ . Also, since the time derivative of Lyapunov

function (5.10) is rearranged using
˙̂

K = 0 as follows:

V̇ ≤ −sT

(
K̂ +

1

2γ2
I

)
s +

γ2

2
|w|2,

the ISS can be also proved for K̂ ≥ KΩ . As a matter of fact, the auto-tuning
PID controller (5.7) without using an auto-tuning law (5.8) is equal to the
conventional PID controller (4.1). In following section, we will discuss about
the criterion on whether the auto-tuning law is necessary to achieve the target
performance or not.

5.3.2 Criterion for Auto-tuning

To apply the auto-tuning law, we should exactly know the gain matrix KΩ

guaranteeing target performance (Ω). Since KΩ is the smallest gain matrix
satisfying sup0≤t≤tf

|s(t)| ≤ Ω by its definition, we can not know the matrix
KΩ till the experimental result satisfies the target performance as follows:

sup
0≤t≤tf

|s(t)| = Ω.

But we can calculate the size of composite error |s(t)| at any time. Moreover,
since the auto-tuning law was composed of the decentralized type in Theorem
10, we suggest the decentralized criterion for auto-tuning as follows:

|si| > Ω√
2n

, (5.12)

where n is the number of configuration coordinates. The relations between
the criterion for auto-tuning and target performance are illustrated in Fig.
5.2. As soon as the composite error arrives at the tuning region of (5.12), the
auto-tuning law should be implemented to assist the achievement of target
performance. Hence, the size of target performance is larger than the non-
tuning region as shown in Fig. 5.2.

Although we can not use the constant gain matrix KΩ which accomplishes
the target performance, an auto-tuning PID controller (5.7) results in the
effect of gain KΩ for |si| > Ω√

2n
as shown in equation (5.11). On the contrary,

if the composite error stays in non-tuning region of Fig. 5.2, namely, |si| ≤
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Fig. 5.2. Target performance and non-tuning region

Ω√
2n

, then the auto-tuning process is stopped. For this case, we expect that the

gain K̂ updated by an auto-tuning law (5.8) will be larger than the matrix KΩ

achieving the target performance. As a matter of fact, the auto-tuning law has
the property of a nonlinear damping suggested in [38, 39]. Strictly speaking,
the first term of auto-tuning PID controller (5.7) means the nonlinear damping
which helps to stabilize the control system against disturbances and the second
term expresses a linear controller. In following section, we will consider the
performance enhancement obtained by using the auto-tuning law.

5.3.3 Performance Enhanced by Auto-tuning Law

The upper bound of composite error (4.17) in Theorem 8 can be modified by
using an auto-tuning law, in other words, it will be expressed more clearly
by the bound of external disturbances and the size of real parameter vector.
The performance enhancement acquired by using an auto-tuning PID con-
troller will be suggested in following Theorem. Actually, new upper bound
of composite error in following Theorem means the performance limitation
of auto-tuning PID controller, however, it requires one assumption for the

update gain matrix Γ and an initial K̂(0).

Theorem 11. Assume that the update gain matrix Γ and an initial K̂(0) are
determined sufficiently large to satisfy the following inequality:

K̂(t) >
1

2
Y (x, t)Y T (x, t). (5.13)

If the auto-tuning PID controller (5.7) is applied to the trajectory tracking
system model (3.3), then its composite error is upper bounded as following
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form:

|s(t)| ≤ |s(0)|e− 1

2λγ2 t
+ γ2‖d‖∞ + γ|θ|, (5.14)

where s(0) is an initial composite error, λ is the maximum eigenvalue of M ,
and θ is the real parameter vector of Lagrangian system.

Proof. If the auto-tuning PID controller (5.7) is applied to the trajec-
tory tracking system (3.3) using the extended disturbance (5.1) divided into
linear parameterization part and external disturbance, then we can get the
time derivative of positive real-valued function

(
1
2sT Ms

)
along the solution

trajectory of closed-loop control system as follows:

d

dt

(
1

2
sT Ms

)
= −sT

(
K̂ +

1

γ2
I

)
s + sT Y θ + sT d

= − 1

2γ2
|s|2 − γ2

2

∣∣∣∣ 1

γ2
s− d

∣∣∣∣2 +
γ2

2
|d|2

−sT

(
K̂ − 1

2
Y Y T

)
s− 1

2

∣∣∣Y T s− θ

∣∣∣2 +
1

2
|θ|2

≤ − 1

2γ2
|s|2 − sT

(
K̂ − 1

2
Y Y T

)
s +

γ2

2
|d|2 +

1

2
|θ|2.

Here, if we use the assumption (5.13) and the maximum eigenvalue of Inertia
matrix M , then above equation can be simplified to:

d

dt

(
λ

2
|s|2

)
≤ − 1

2γ2
|s|2 +

γ2

2
|d|2 +

1

2
|θ|2.

If we multiply above inequality by e
1

λγ2 t
, then it becomes

d

dt

(
λ

2
|s(t)|2e 1

λγ2 t
)
≤ γ2

2
|d(t)|2e 1

λγ2 t
+

1

2
|θ|2e 1

λγ2 t
. (5.15)

Integrating (5.15) over [0,t], we arrive at the following form:

|s(t)|2 ≤ |s(0)|2e− 1

λγ2 t
+

γ2

λ

∫ t

0

e
− 1

λγ2 (t−τ)|d(τ)|2dτ +
|θ|2
λ

∫ t

0

e
− 1

λγ2 (t−τ)
dτ

≤ |s(0)|2e− 1

λγ2 t
+

γ2

λ
sup

τ∈[0,t]

{|d(τ)|2} ∫ t

0

e
− 1

λγ2 (t−τ)
dτ

+
|θ|2
λ

∫ t

0

e
− 1

λγ2 (t−τ)
dτ

= |s(0)|2e− 1

λγ2 t
+

γ2

λ
‖d‖2∞λγ2(e

− 1

λγ2 t − 1) +
|θ|2
λ

λγ2(e
− 1

λγ2 t − 1)

Using the fact that
√

a2 + b2 + c2 ≤ |a|+ |b|+ |c|, we obtain an explicit upper
bound for composite error as follows:
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|s(t)| ≤ |s(0)|e− 1

2λγ2 t
+ γ2‖d‖∞ + γ|θ|.

%

In above Theorem, the initial composite error can be set to zero by making
the desired trajectory smooth. Hence, the composite error is bounded by the
size of plant parameter vector and L∞ norm of external disturbance as follows:

|s(t)| ≤ γ2‖d‖∞ + γ|θ|,
under the assumption (5.13). However, we do not know whether the assump-
tion is satisfied or not. In the assumption, the regressor matrix Y (x, t) is
dependent on desired configurations and errors. The auto-tuned gain matrix

K̂(t) is affected by the update gain matrix Γ and an initial K̂(0). Therefore,

an initial K̂(0) should satisfy at least the following inequality:

K̂(0) >
1

2
Y (0, 0)Y T (0, 0).

As a matter of fact, since Y (0, 0) is equal to the simple regressor obtained
by separating parameter vector from gravity torque g(q), if there exists no

gravity torque, namely, g(q) = 0, then K̂(0) > 0. Also, the update gain
matrix should be chosen sufficiently large to satisfy the assumption because
it determines the increasing rate of auto-tuned gains.

If there are no external disturbances d = 0, then upper bound of composite
error is bounded only by the size of parameter vector of Lagrangian system:

|s(t)| ≤ γ|θ|. (5.16)

As a matter of fact, above boundedness of composite error means the perfor-
mance limitation of an auto-tuning PID controller. Also, we can see in (5.16)
that the composite error can be adjusted by L2-gain γ like a linear tuning
rule explained in Remark 6. Basically, the auto-tuning PID controller has the
performance limitation for trajectory tracking model of Lagrangian system.
Hence, the model adaptation is required to overcome this limitation and bring
the global asymptotic stability(GAS).

5.4 Model Adaptation

First of all, the regressor should be obtained to use the model adaptation in
controller. However, it is not easy to obtain the applicable regressor for general
Lagrangian systems because the plant parameter vector can be maximum 10n-
dimensional one θ ∈ '10n, according to the report in [35]. This is a serious
disadvantage for the controller using a model adaptation. However, if the
regressor can be obtained anyhow, then the adaptive motion control scheme
can be applied to the trajectory tracking system. Also, the controller using
model adaptation overcomes the performance limitation of PID control itself
as suggested in following Theorem.
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Theorem 12. Assume that there exists an auto-tuning PID controller (5.7)
in Theorem 10. If the adaptive auto-tuning PID controller as following form:

τ =

(
K̂(t) +

1

γ2
I

)
s + Y (x, t)θ̂(t) (5.17)

with the plant parameter update law:

˙̂
θ(t) = Λ−1Y T (x, t)s (5.18)

is applied to the trajectory tracking system (3.3), then the closed-loop control
system is external disturbance input-to-state stable(ISS), where Λ is the gain
matrix for parameter update.

Proof. First, let us consider a Lyapunov function as follow:

VAdaptive(s, K̂, θ̂, t) = V (s, K̂, t) +
1

2
(θ − θ̂(t))T Λ(θ − θ̂(t)), (5.19)

where Λ is a constant, symmetric and positive definite matrix and V (s, K̂, t)
is (5.9). If the adaptive auto-tuning PID controller (5.17) is applied to the
trajectory tracking system (3.3), then we get the time derivative of Lyapunov
function (5.19) along the solution trajectory of closed-loop system with the
control law (5.17) as follows:

V̇Adaptive = −sT

(
K̂(t) +

1

γ2
I

)
s + sT d + sT Y

(
θ − θ̂(t)

)
+tr

[(
K̂(t)−KΩ

)
Γ−1 ˙̂

K(t)
]
− (θ − θ̂(t))T Λ

˙̂
θ,

= −sT

(
KΩ +

1

2γ2
I

)
s− γ2

2

∣∣∣∣ 1

γ2
s− d

∣∣∣∣2 +
γ2

2
|d|2

+tr
[
(K̂(t)−KΩ)

{
Γ−1 ˙̂

K(t)− ssT
}]

+(θ − θ̂(t))T (Y T s−Λ
˙̂
θ). (5.20)

If the auto-tuning law (5.8) and parameter update law (5.18) are applied to
above (5.20), then we can get the following similar to (3.8):

V̇Adaptive ≤ −sT

(
KΩ +

1

2γ2
I

)
s +

γ2

2
|d|2. (5.21)

Since the right hand side of above inequality (5.21) is unbounded function for
s and d, respectively, hence, we conclude that the adaptive auto-tuning PID
controller brings the external disturbance input-to-state stability(ISS). %

Additionally, if there exist no external disturbances, in other words, d = 0,
then we can see that the adaptive auto-tuning PID controller offers the global
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asymptotic stability(GAS) for the trajectory tracking model of Lagrangian
system. However, this adaptive plus auto-tuning PID control scheme can be
applied only when the regressor is known. For most Lagrangian systems, the
PID control scheme has been used without using model adaptation because it
was difficult or impossible to obtain the exact regressor for many Lagrangian
systems. Therefore, only an auto-tuning PID controller (5.7) will be imple-
mented to show the validity of automatic performance tuning method in fol-
lowing section.

5.5 Experimental Results

To show the effectiveness of an auto-tuning PID controller, we employ
three link robotic manipulator as the representative Lagrangian system. This
robotic manipulator consists of three direct drive motors: the first axis motor
has 200[Nm] capability, the second one 55[Nm] and the third one 18[Nm]. The
desired configuration profiles of Fig. 5.3.(a) are obtained by solving inverse
kinematics for 3 line segments whose lengths are all 0.7[m]. Also, the given
trajectories require the fast motion (maximum velocity ≈ 3 [rad/s]) of robotic
manipulator as shown in Fig. 5.3.(b). First, we determine the static gains of
auto-tuning PID controller (5.7) as KP = 20I, KI = 100I and γ = 0.5
satisfying the design guidelines (C1),(C2),(C3). Now, the controller has the
following form: for i = 1, 2, 3,

τi = (K̂i(t) + 4)si

si = ėi + 20ei + 100

∫
eidt

dK̂i(t)

dt
= Γs2

i , if |si| > Ω√
2n

,

where τi is the i-th element of input torque vector τ and n = 3. Also, initial
auto-tuned gains are determined as K̂i(0) = 0.1 because the robotic ma-
nipulator is not affected by the gravity. Second, since the composite error
is approximately proportional to the configuration error with proportional
constant KP , the target performance can be approximately determined as
follows:

Ω =
√

2n× |si|t ≈
√

2n×KP × |ei|t. (5.22)

where |si|t and |ei|t are the target composite error and configuration error,
respectively. For instance, if we are to obtain the performance of |ei|t <
0.02 [rad] for each driving axis, then the target performance should be de-
termined as Ω = 1.0 by (5.22). Also, the update gain Γ = 1000 is used in an
auto-tuning law. Fig. 5.3.(c) and (d) show experimental results: the config-
uration error and its velocity error. In figures, the errors are large at initial
time, however, they are reduced till the target performance is achieved by an
auto-tuning law.
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As a matter of fact, the auto-tuning law is executed at the exterior of two
dotted lines in Fig. 5.4.(a). After the auto-tuning process is finished, the auto-

tuned gains arrive at K̂1 = 136.98, K̂2 = 65.60 and K̂3 = 6.83 as we can see
in Fig. 5.4.(c). To examine the auto-tuning process in detail, the horizontal
ranges of 0 ∼ 1 second in Fig. 5.4.(a) and (c) are enlarged as shown in that
figure (b) and (d). The auto-tuning for first axis is started at 0.11 second and
ended at 0.26 second because the error goes over the criterion (dotted line :
1/
√

6 = 0.408) for the first time as shown in Fig. 5.4.(b). Also, the error of
second axis goes over the criterion between 0.13 and 0.24 second. Finally, since
the error of third axis goes over the criterion downward twice, the auto-tuning
process is implemented twice as shown in Fig. 5.4.(d). The experimental result
of Fig. 5.4.(a) shows that the target performance is achieved after 0.6 second
when the auto-tuning is finished.
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Fig. 5.4. Composite error and auto-tuned gains

5.6 Summary

Since the equilibrium point can not be defined for the control system in-
volving performance limitation, the quasi-equilibrium region was newly intro-
duced to guarantee the existence of PID controller achieving target perfor-
mance. Second, we proposed the auto-tuning PID controller achieving target
performance. The auto-tuning law was derived from the direct adaptive con-
trol scheme based on ISS and the analysis result of performance limitation.
Through experiments, we showed the effectiveness of automatic performance
tuning method.
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6

Output Feedback PID Control

6.1 Introduction

In previous chapters and [10, 11, 13, 14, 15], an inverse optimal PID controller
was derived as a form of full state feedback one from the extended disturbance
input-to-state stability and H∞ performance index. From now on, we are to
make the PID state observer for an inverse optimal PID controller. There are
two reasons why the PID control systems are not equipped with sensing de-
vices for all states: the one is because of their costs and the other is that sensors
show different characteristics according to a kind of sensors. For instance, the
tachometer and encoder have been used to measure the derivative and con-
figuration coordinates (e.g. velocity and position information) for Lagrangian
systems, respectively, however, an analog sensor such as tachometer is more
contaminated by measurement noises than the digital sensor such as encoder.
In this case, since the performance limitation of control system is subject to
the performance of tachometer against sensor noise, most Lagrangian systems
are equipped with only the noise-free configuration measurement devices such
as the rotary encoder or linear encoder. Therefore, it is necessary for a PID
state observer to estimate PID full states from the measurement output.

The nonlinear observers for Lagrangian systems were suggested in [44, 19],
also, their regions of attraction. Since these nonlinear observers require the
exact model for Lagrangian system, however, they may not be available if the
dynamic parameters of Lagrangian system are not identified exactly. Second,
another nonlinear observer to estimate the angular velocity and momentum
was proposed using Euler-quaternion in [54]. Third, the PD linear observer was
suggested in [6, 7]. They showed that the output feedback PD controller (PD
controller with PD linear observer) yields the semi-global uniform ultimate
boundedness for Lagrangian systems and, in particular, the observer derivative
gain is required to be sufficiently large in order to guarantee it. Actually, since
this is the property of high-gain observer, the well-known high-gain observer
theory is used to define newly the PID state observer.

Y. Choi, W.K. Chung: PID Trajectory Tracking Control for Mechanical Systems, LNCIS 298, pp. 89–100, 2004.
Springer-Verlag Berlin Heidelberg 2004
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As a representative observer for nonlinear systems, the high-gain observer
was introduced for the first time in [21]. The high-gain observer robustly esti-
mates the derivatives of output signal. However, the high-gain observer does
not include the integrals of output signal, though it is required to make an
output feedback PID control system. In this chapter, the PID state observer
is suggested as an estimator for derivatives and integrals of measurement out-
puts. The separation principle between the high-gain observer and the full
state feedback controller was suggested in [4], based on the separation prin-
ciple suggested in [62]. The observer design condition to recover the stability
achieved by a full state feedback PID control system is also suggested in this
chapter.

If the PID state observer is used, then an inverse optimal PID controller
suggested in [14] can be rewritten by replacing a state vector with its esti-
mate under the assumption that the observation is exact, i.e., the certainty
equivalence principle, as follows:

τ = R−1BT P x̂

=

(
K +

1

γ2
I

)
(x̂3 + KP x̂2 + KI x̂1) , (6.1)

where K,KP ,KI are constant, diagonal and positive definite matrices sat-
isfying K2

P > 2KI > 0, γ means L2-gain and x̂ expresses the estimate for a
real state vector x which is defined as following form:

x
.
=

x1

x2

x3

 =

∫
e

e

ė

 ∈ '3n.

From now on, we call (6.1) an output feedback PID controller, where x̂1 ∈ 'n

represents the estimate of integral configuration error vector, x̂2 ∈ 'n that of
configuration error vector itself and x̂3 ∈ 'n that of derivative one.

This chapter is organized as follows. The next section suggests the nor-
mal form of Lagrangian systems. In section 6.3, the PID state observer is
derived from the robustness against disturbances, and its closed-loop stability
is investigated and the reduced-order ID state observer is also suggested.

6.2 Normal Form of Lagrangian Systems

The state-space description for Lagrangian systems has been suggested in
[14, 47] as follows:

ẋ = A(x, t)x + B(x, t)w + B(x, t)u, (6.2)

where w is the extended disturbance and u the control input vector having
this relation u = −τ with an inverse optimal PID controller. However, this
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state-space description can not be used to make an observer because it is a
nonlinear equation, e.g., the system matrix A(x, t) includes the state vector
again. Hence, we are to use the normal form which is the simplest one among
the representation methods for nonlinear systems. Now, let us take the normal
form for Lagrangian system as follows:

ẋ = Aox + Boφ(x2, x3, τ , t)
y = Cox

(6.3)

where,

Ao =

0 I 0
0 0 I

0 0 0


Bo =

0
0
I


Co =

[
0 I 0

]
φ(x2, x3, τ , t) = q̈d(t) + M−1(q) [C(q, q̇)q̇ + g(q)− τ ] (6.4)

and I is an n × n identity matrix. Also, we should notice that only config-
uration error vector is measured by encoders, i.e., y = x2 ∈ 'n, and the
nonlinear function φ(x2,x3, τ , t) is not a function of x1, because the configu-
ration coordinates (q = qd(t)−x2) and their derivatives (q̇ = q̇d(t)−x3) are
functions of x2, x3 and time t.

6.3 PID State Observer

In this section, the PID state observer is defined as a kind of high-gain observer
in [34]. Actually, the PID state observer is different from the high-gain observer
only in that the middle states are measured, not first states among integrator
block chains of normal form (6.3), i.e., y = x2. Now, let us define the PID
state observer according to the form of Luenberger observer as follows:

˙̂x = Aox̂ + H [y −Cox̂] , (6.5)

where H is an observer gain matrix and, in particular, we should notice
that this is a linear state observer. Also, the observer gain matrix should
be designed so that the observer can estimate the PID states accurately.

6.3.1 Observer Gain

First of all, if we define the state estimation error vector as x̃ = x− x̂, then
the estimation error dynamics can be obtained by subtracting (6.5) from (6.3)
as follow:
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˙̃x = [Ao −HCo] x̃ + Boφ(x2, x3, τ , t). (6.6)

Here, since the nonlinear term φ(.) corresponds to the disturbance term with
which we can not deal, the observer gain should be designed with an additional
goal of rejecting the effect of disturbance term φ(.) on the estimation error
x̃. Also, when it is not possible for the transfer matrix from disturbance to
estimation error to make zero, we should design the observer gain HT =[
h0I, h1I, h2I

]
such that this transfer matrix can be very close to zero. Now,

let us consider the transfer matrix from φ to x̃ in (6.6) as follow:

Gφx̃(s) = (sI3n×3n −Ao + HCo)
−1Bo

=


1−h0

s(s2+h1s+h2)
I

1
s2+h1s+h2

I
s+h1

s2+h1s+h2
I

 ,

where s means Laplace operator. Since the first term of above transfer matrix
has the integrator, the first element h0 of observer gain matrix should be
chosen as one, i.e., h0 = 1. Similar to the high-gain observer, the remaining
transfer functions can be also made small by choosing h2 3 h1 3 1. In
particular, if the remaining observer gains are chosen as follows:

h1 =
α1

ε
and h2 =

α2

ε2
(6.7)

where ε is an observer gain parameter (0 < ε 6 1), α1 and α2 are positive
real constants, then above transfer matrix is rearranged as follows:

Gφx̃(s) =

 0
ε2

ε2s2+α1εs+α2
I

ε2s+α1ε
ε2s2+α1εs+α2

I

 → ∴ lim
ε→0

Gφx̃(s) = 0.

This disturbance rejection property of PID state observer (6.5) can be ob-
tained by designing the gain matrix like a high-gain observer. Also, it is
important to perceive that the PID state observer includes both an exact
integrator and an approximate differentiator at the same time. This can be
seen immediately by considering the transfer matrix from the measurement
output y to the estimate x̂ for a PID state observer (6.5) as follow:

Gyx̂(s) = (sI3n×3n −Ao + HCo)
−1H

=

 1
sI

εα1s+α2

ε2s2+εα1s+α2
I

α2s
ε2s2+εα1s+α2

I

 .

Here, if the observer gain parameter ε approaches zero for above transfer
matrix as follow:
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lim
ε→0

Gyx̂(s) =

 1
sI

I

sI

 ,

then x̂2 and x̂3 approach y and ẏ, respectively. Since the measurement output
is the configuration error, i.e., y = x2 = e, therefore, we can confirm that
a PID state observer (6.5) estimates the integral error, current error and
derivative error according as ε → 0.

Remark 9. The linear PD state observer for Lagrangian systems was suggested
for the first time in [7], though it was not a PID state observer. Also, it was
proved that the PD output feedback controller using the PD state observer
could yield the semi-global uniform ultimate boundedness.

6.3.2 Stability

When the output feedback PID controller (6.1) using the PID state observer
(6.5) is applied to Lagrangian systems, the closed-loop stability is examined in
this section. To begin with, since the nonlinear function φ(x2, x3, τ , t) is not a
function of x1, the x1 part of the state vector can be neglected when the total
closed-loop stability is considered. Now, let us introduce the transformation
into the form without x̃1 to use the singular perturbation theory, when ε is
very small, with the following relation:

ϕ = D(ε)x̃ (6.8)

where

D(ε) =

[
0 I 0
0 0 εI

]
∈ '2n×3n,

then the estimation error dynamics (6.6) is transformed as follows:

εϕ̇ = Asϕ + ε2Bsφ(x2, x3, τ , t), (6.9)

where

As
.
= εD(ε) [Ao −HCo] D

+(ε) =

[−α1I I

−α2I 0

]
Bs

.
=

1

ε
D(ε)Bo =

[
0
I

]
,

and D+ is the pseudoinverse of D. The transformed estimation error dynamics
(6.9) shows clearly that reducing ε decreases the effect of the disturbance φ(.).
Also, it is clear that the dynamics of estimation error will be much faster than
that of x when an observer gain parameter ε is sufficiently small. According
to a survey reported in [17, 34], during this transient period, the estimation
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error x̃ may exhibit peaking behavior where the transient response takes the
impulsive-like form (1/ε)e−at/ε as ε approaches zero for some a > 0. Actually,
it is an intrinsic feature of the high-gain observer that rejects the effect of
the disturbance φ(.) in (6.9). Also, it is known that this peaking phenomenon
can be overcome by saturating either control inputs or state estimates. After
peaking period, the estimation error becomes the order of O(ε) and the output
feedback PID controller becomes O(ε) close to the full state one.

If the output feedback PID controller (6.1) is applied to the Lagrangian
system (6.2) and the transformed estimation error dynamics (6.9), then the
closed-loop system described by using state variables x and ϕ can be obtained
according to an observer gain parameter ε as follows:

ẋ = Ax + Bw −BR−1BT P (x−D+(ε)ϕ) (6.10)

εϕ̇ = Asϕ + ε2Bsφ(x2,x3,R
−1BT P (x−D+(ε)ϕ), t), (6.11)

where the solution trajectories of above closed-loop system starting from x(0)
and ϕ(0) are denoted by x(t, ε) and ϕ(t, ε), respectively. According to the
singular perturbation theory in [33], each stability of reduced system and
boundary-layer one derived from the closed-loop system (6.10) and (6.11) is
examined in following Remarks. Using these stability proofs, the total stability
for closed-loop system is proved in following Theorem.

Remark 10. The reduced system derived from the closed-loop one has the
extended disturbance (w) input-to-state (x) stability.

Proof. Since ϕ = 0 is the unique solution of (6.11) when ε = 0, the
reduced system is obtained by putting ϕ = 0 in (6.10) as follow:

dx

dt
= (A−BR−1BT P )x + Bw.

For a reduced system, since an output feedback PID controller (6.1) becomes
equal to an inverse optimal PID controller, as proved in Theorem 3 in [14],

the Lyapunov function defined as V (x, t)
.
= 1

2xT P (x, t)x shows the following
relation:

dV

dt
= Vt + V x

{
(A−R−1BT P )x + Bw

}
≤ −1

2
xT

(
Q + PBKBT P

)
x + γ2|w|2, (6.12)

where Q > 0, Vt = ∂V
∂t and V x

.
= ∂V

∂xT is a row vector. Therefore, we can see
from (6.12) that the reduced system has the extended disturbance input-to-
state stability. %

Remark 11. The boundary-layer system derived from the closed-loop one has
the asymptotic stability.
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Proof. The boundary-layer system is obtained by applying (6.11) to the
change of time variable σ = t/ε then setting ε = 0 as follow:

dϕ

dσ
= Asϕ.

For a boundary-layer system, let us define the Lyapunov function as W (ϕ)
.
=

1
2ϕT P sϕ, with the following matrix satisfying Lyapunov equation P sAs +

AT
s P s = −I2n×2n:

P s =

[
α2+1
2α1

I − 1
2I

− 1
2I

(1+α2)−α2
1

2α1α2
I

]
,

where positive constants α1 and α2 should be chosen satisfying this relation
(1+α2)

2

1+2α2
> α2

1 to guarantee P s > 0. Then, we can see that the boundary-layer
system has the asymptotic stability because the time derivative of Lyapunov
function has the following form:

dW

dσ
= W ϕAsϕ

= −1

2
ϕT ϕ, (6.13)

where W ϕ
.
= ∂W

∂ϕT is a row vector. %

Theorem 13. Let K = kI and KP = kP I. If the observer gain parameter ε
is chosen within

0 < ε <
1

kP
, (6.14)

then the closed-loop system (6.10) and (6.11) has the extended disturbance
(w, φ) input-to-state (x, ϕ) stability.

Proof. First, let us take the total Lyapunov function of following form:

Z(x, ϕ, t) = (1− ν)V (x, t) + νW (ϕ), for 0 < ν < 1

then the time derivative of Lyapunov function is obtained along the solution
trajectories of closed-loop system (6.10) and (6.11) as follow:

dZ

dt
= (1− ν)

(
Vt + V x

{
(A−R−1BT P )x + Bw

})
+(1− ν)V xBR−1BT PD−1(ε)ϕ

+
ν

ε
W ϕAsϕ + νεW ϕBsφ.

If both (6.12) and (6.13) are used with V xB = xT PB and W ϕBs =
ϕT P sBs, then above equation is modified to the following form:
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dZ

dt
≤ − (1− ν)

2
xT

(
Q + PBKBT P

)
x + (1− ν)γ2|w|2

+(1− ν)xT PBR−1BT PD−1(ε)ϕ

− ν

2ε
ϕT ϕ + νεϕT P sBsφ. (6.15)

Second, if Young’s inequality is utilized as following form:

ϕT P sBsφ ≤ kP

2ε
ϕT ϕ +

2ε

kP
φT BT

s P sP sBsφ

=
kP

2ε
ϕT ϕ +

2εδ

kP
φT φ,

by using BT
s P sP sBs = δI with

δ =
1

4
+

(
(1 + α2)− α2

1

2α1α2

)2

,

then above inequality (6.15) can be arranged as the following form:

dZ

dt
≤

−1

2

[
x

ϕ

]T [
(1− ν)(Q + PBKBT P ) −(1− ν)PBR−1BT PD+(ε)

−(1− ν)D+T (ε)PBR−1BT P
ν(1−εkP )

ε I

] [
x

ϕ

]
+(1− ν)γ2|w|2 +

2νε2δ

kP
|φ|2, (6.16)

where w and φ are the extended disturbances for the reduced system and
the estimation error dynamics, respectively. Third, the matrix related with

an augmented state vector
[
xT , ϕT

]T
should be positive definite to prove

the extended disturbance (w, φ) input-to-state (x, ϕ) stability. Hence, the
following inequality obtained from (6.16) should be satisfied:

Q + PBKBT P >
ε(1− ν)

ν(1− εkP )
PBR−1BT PD+(ε)D+T (ε)PBR−1BT P .

(6.17)
Since Q > 0 and R−1BT PD+(ε)D+T (ε)PBR−1 in (6.17) can be simplified
to the following form: (

K2
P +

1

ε2
I

)(
K +

1

γ2
I

)2

,

if the following condition is satisfied

K ≥ ε(1− ν)

ν(1− εkP )

(
K2

P +
1

ε2
I

)(
K +

1

γ2
I

)2

, (6.18)
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then we say that the inequality (6.17) is always satisfied. Also, by letting
KP = kP I and K = kI, above equation (6.18) can be more simplified to the
following form:[

(1− ν)k2
P (k + 1/γ2)2 + νkkP

]
ε2 − νkε + (1− ν)(k + 1/γ2)2 ≤ 0.(6.19)

To have the real ε-boundary from above inequality, the discriminant should
not be at least negative like this:

D
.
= ν2k2 − 4

[
ak2

P + νkkP

]
a

= ν2k2 − 4νkkP a− 4k2
P a2

= (νk − 2kP a)2 − 8k2
P a2

= (νk − (2 + 2
√

2)kP a)(νk + (2
√

2− 2)kP a) ≥ 0

where a = (1 − ν)(k + 1/γ2)2 > 0. Since ν, k, kP , a are all positive real con-
stants, we can find the following ν-boundary from above inequality:{

νk ≥ (2 + 2
√

2)kP a
} ⋂

{0 < ν < 1}

→ ∴
(2 + 2

√
2)kP (k + 1/γ2)2

k + (2 + 2
√

2)kP (k + 1/γ2)2
≤ ν < 1. (6.20)

For the ν-region of (6.20), the discriminant has the region of 0 ≤ D < k2.
Also, the real ε-boundary can be obtained from (6.19) as follows:

νk −√D

2k2
P a + 2νkkP

≤ ε ≤ νk +
√

D

2k2
P a + 2νkkP

. (6.21)

Fourth, when ν = (2+2
√

2)kP (k+1/γ2)2

k+(2+2
√

2)kP (k+1/γ2)2
, D = 0 and ε has the multiple root

at ε = 1+
√

2
(3+2

√
2)kP

as we can see in (6.21). Also, according as ν → 1, D → k2

and the ε-region is extended to 0 < ε < 1
kP

as we can see in (6.21). These are
illustrated in Fig. 6.1.

In other words, if the observer gain parameter within ε-region of (6.14)
is chosen as shown in Fig. 6.1, then the ν parameter in Lyapunov function
Z(x, ϕ, t) exists within ν-region of (6.20) so that the condition (6.17) can be
satisfied. Therefore, we can conclude that the closed-loop system (6.10) and
(6.11) has the extended disturbance (w, φ) input-to-state (x, ϕ) stability. %

In above Theorem, we showed that an output feedback PID controller us-
ing the PID state observer can recover the disturbance input-to-state stability
(ISS) achieved by using a full state feedback PID controller (an inverse op-
timal PID controller), if one condition for an observer gain can be satisfied.
For instance, if the gain kP = 20 was used as in [14], then the observer gain
parameter ε should be determined within 0 < ε < 0.05 to guarantee the ISS
by Theorem 13. Actually, the smaller ε, the better PID state observer perfor-
mance. However, very small ε causes the difficulty in implementing the PID



www.manaraa.com

98 6 Output Feedback PID Control

( )
1 2

3 2 2 Pk
ε +=

+

1

Pk
ε =

( ) ( )
( ) ( )

22

22

2 2 2 1/

2 2 2 1/

P

P

k k
when

k k k

γ
ν

γ

+ +
=

+ + +

1when ν =

Axisε −

0ε =
1as ν →1as ν →

Fig. 6.1. The ε-boundary according to ν values

state observer because the observer gains become too large. Since it can be
unnecessary to estimate the part of states corresponding to the measurement
output, the reduced-order observer is suggested in following section.

6.3.3 Reduced-Order ID State Observer

Since the configuration error vector is the measurement output, i.e., y = x2,
we can make the reduced-order observer that estimates only x1 and x3. To
begin with, let us define new state vector as follows:

η1 = x1 − hr1y

η2 = x3 − hr2y,

where hr1 and hr2 are new observer gains, then the reduced-order dynamics

can be obtained from (6.3) using η
.
= [ηT

1 ηT
2 ]T and xr

.
= [xT

1 xT
3 ]T as follows:

η̇ = Arη + Bry + Broφ(y, η2, τ , t)
xr = Crη + Dry,

(6.22)

where
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Ar =

[
0 −hr1I

0 −hr2I

]
Br =

[
(1− hr1hr2)I

−h2
r2I

]
Cr =

[
I 0
0 I

]
Dr =

[
hr1I

hr2I

]
Bro =

[
0
I

]
.

For a reduced-order system (6.22), let us define the reduced-order observer as
follows:

˙̂η = Arη̂ + Bry

x̂r = Crη̂ + Dry,
(6.23)

where η̂ and x̂r are the estimates for η and xr. Also, if we define the estimation
errors as x̃r = xr − x̂r and η̃ = η − η̂, then the estimation error dynamics is
obtained by subtracting (6.23) from (6.22) as following form:

˙̃η = Arη̃ + Broφ(y, η2, τ , t)

x̃r = Crη̃.

Since the transfer function from disturbance φ to the reduced-order estimation
error x̃r is calculated as follow:

Gφx̃r
(s) = Cr[sI2n×2n −Ar]

−1Bro

=

[
− hr1

s(s+hr2)
I

1
s+hr2

I

]
,

if we choose the observer gains as follows:

hr1 = 0 and hr2 =
α

ε
(6.24)

with a small ε 6 1, then above transfer function is arranged as follows:

Gφx̃r
(s) =

[
0
ε

εs+αI

]
→ ∴ lim

ε→0
Gφx̃r

(s) = 0.

Hence, the effect of disturbance φ is gradually diminished for a reduced-order
estimation error x̃r according as ε → 0.

On the other hand, we can see that the reduced-order observer (6.23)
includes both an exact integrator and an approximate differentiator. Let us
consider the reduced-order observer from y to x̂r as follow:
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Gyx̂r
(s) = Cr(sI2n×2n −Ar)

−1Br + Dr

=

[
1
sI

αs
εs+αI

]
.

Here, if the observer gain parameter ε approaches zero as follow:

lim
ε→0

Gyx̂r
(s) =

[
1
sI

sI

]
, (6.25)

then x̂r1 and x̂r2 approach
∫

edt and ė, respectively. Differently from the PID
state observer, since this observer (6.23) estimates only both integral error and
derivative error, we call it the reduced-order ID state observer.

6.4 Notes

The PID state observer and its reduced-order one were suggested for La-
grangian systems. Also, we proved that an output feedback PID controller
using the PID state observer can also recover the extended disturbance input-
to-state stability (ISS) achieved by using a full state feedback one, if one
condition for an observer gain parameter is satisfied. In a broad sense, the
separation principle between an inverse optimal PID controller and PID state
observer should be made as discussed in references such as [4, 5, 17, 62]. Our
future work should be to reveal the separation principle for PID control and
observer systems.
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Concluding Remarks

This book has answered to several possible questions which can be raised in
applying a trajectory tracking PID control to mechanical systems, e.g., can it
be an optimal control? If yes, what is it? Can its performance tuning rules be
derived analytically? Is there its automatic performance tuning law? Can an
output feedback PID control be effectively used under what condition? etc.
Also. this book extends the PID control theory to an optimal control, auto-
tuning control, and output feedback control. Those are simply summarized in
following paragraphs.

First, this book found out algebraic relationships between the individual
PID gains and H∞ performance index. It was proved that an inverse optimal
PID control exists if and only if the mechanical system is extended disturbance
input-to-state stable (ISS).

Second, the performance tuning rules of PID control were derived from the
performance limitation. Two simple performance tuning rules were suggested
as the name of square rule and linear rule, and then, the compound rule was
suggested as one rule unifying both square rule and linear one.

Third, an automatic performance tuning rule of PID control was derived
from both quasi-equilibrium region and direct adaptive control. This auto-
matic performance tuning rule can help to accomplish the target performance.

Fourth, the PID state observer was suggested to achieve the output feed-
back PID controller. Also, it was proved that the output feedback PID control
system including a PID state observer can be disturbance input-to-state stable
with one condition for observer gain.

Although this book has dealt with possible many subjects which can be
raised for continuous PID control systems, we still need the theoretical devel-
opment for the sampled-data PID control and discrete PID control because
the PID control is mostly performed in a digital form. Also, PID control has
produced many kinds of PID control plus something methods for mechani-
cal systems, e.g., PID plus feed-forward dynamic term, PID plus disturbance
observer, PID plus friction compensator, etc. These methods have each mean-
ing according to the control objectives of various mechanical systems. It has

Y. Choi, W.K. Chung: PID Trajectory Tracking Control for Mechanical Systems, LNCIS 298, pp. 101–102, 2004.
Springer-Verlag Berlin Heidelberg 2004
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been also very important to study PID control plus something for mechanical
systems, in these cases, this book can help to study and analyze them.
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